Variations of the Sine Function

Variations of the Sine Function

This is the 'basic cycle' of the sine function.

Variations of the Sine Function

This is the 'basic cycle' of the sine function. Its period is 2π units.

Variations of the Sine Function

This is the 'basic cycle' of the sine function. Its period is 2π units. Its amplitude is 1 unit.

Variations of the Sine Function

This is the 'basic cycle' of the sine function.
Its period is 2π units. Its amplitude is 1 unit.
The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.

Variations of the Sine Function

This is the 'basic cycle' of the sine function.
Its period is 2π units. Its amplitude is 1 unit.
The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.
Consider the equation $\mathrm{y}=\mathrm{A} \operatorname{Sin}(\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.

Variations of the Sine Function

This is the 'basic cycle' of the sine function. Its period is 2π units. Its amplitude is 1 unit. The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.

Consider the equation $\mathrm{y}=\mathrm{A} \operatorname{Sin}(\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
We will consider the significance of each of the constants A, B, C, and D.

Variations of the Sine Function

This is the 'basic cycle' of the sine function. Its period is 2π units. Its amplitude is 1 unit. The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.

Consider the equation $\mathrm{y}=\mathrm{A} \operatorname{Sin}(\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
We will consider the significance of each of the constants A, B, C, and D, starting with A.

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
Here are two other examples (showing the 'basic cycle' only).

$$
y=(1 / 2) \operatorname{Sin} t
$$

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
Here are two other examples (showing the 'basic cycle' only).

$$
y=(1 / 2) \operatorname{Sin} t
$$

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=\operatorname{ASin}(t)$
In these examples, the amplitude $=\mathrm{A}$.

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?
$y=(1 / 2) \operatorname{Sin} t$

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?
$y=(1 / 2) \operatorname{Sin} t$
$y=(-1 / 2) \operatorname{Sin} t$

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?
$y=(1 / 2) \operatorname{Sin} t$
$y=(-1 / 2) \operatorname{Sin} t$

Variations of the Sine Function

We will start with equations of the form $y=A \operatorname{Sin}(t)$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?
$y=(1 / 2) \operatorname{Sin} t$
$y=(-1 / 2) \operatorname{Sin} t$

If $\mathrm{A}<0$, then the graph 'flips' over the mid-line.

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?
$y=(1 / 2) \operatorname{Sin} t$
$y=(-1 / 2) \operatorname{Sin} t$

If $\mathrm{A}<0$, then the graph 'flips' over the mid-line.

Variations of the Sine Function

We will start with equations of the form $\mathrm{y}=\mathrm{ASin}(\mathrm{t})$
In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?
$y=(1 / 2) \operatorname{Sin} t$
$y=(-1 / 2) \operatorname{Sin} t$

If $\mathrm{A}<0$, then the graph 'flips' over the mid-line.
The amplitude is equal to the absolute value of A.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A.

Variations of the Sine Function

Consider the equation $y=A \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$,

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A.
(2) If $\mathrm{A}>0$, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.

$$
y=(1 / 2) \operatorname{Sin} t
$$

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.
(3) If A <0,

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$, then the basic cycle is 'above the mid-line' for the first half of the cycle and 'below the mid-line' for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.

We will next consider the significance of the constant D .

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Sine Function

We will start with equations of the form $y=A \sin t+D$.
Here are two more examples (showing the 'basic cycle' only).
 the mid-line of the graph.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.

We will next consider the significance of the constants B and C .

Variations of the Sine Function

Variations of the Sine Function

In the above sine graph,

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$,

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2} \operatorname{Sin}(2 \mathbf{t}-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

The basic cycle ends on the mid-line when $2 \mathrm{t}-\pi=2 \pi$. $\rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

The basic cycle ends on the mid-line when $2 \mathrm{t}-\pi=2 \pi$. $\rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{1}
$$

The basic cycle starts on the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

The basic cycle ends on the mid-line when $2 \mathrm{t}-\pi=2 \pi . \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $y=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

The basic cycle 'intersects the mid-line 'half-way' through the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $y=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The basic cycle starts on the mid-line
when $2 \mathrm{t}-\pi=0 . \rightarrow \mathrm{t}=\pi / 2$
The basic cycle ends on the mid-line
when $2 \mathrm{t}-\pi=2 \pi . \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $y=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The basic cycle starts on the mid-line
when $2 \mathrm{t}-\pi=0 . \rightarrow \mathrm{t}=\pi / 2$
The basic cycle ends on the mid-line

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $y=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\mathrm{A}=+2
$$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\mathrm{A}=+2
$$

\rightarrow The amplitude is 2 .

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\mathrm{A}=+2
$$

\rightarrow The amplitude is 2 .

- The basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\mathrm{A}=+2
$$

- The amplitude is 2 .
- The basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $\mathrm{t}=0$, and it ends on the mid-line when $\mathrm{t}=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{2 S i n}(2 t-\pi)+\mathbf{1}$.

$$
\mathrm{A}=+2
$$

- The amplitude is 2 .
- The basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Here is a more complete graph.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Here is a more complete graph.

$$
y=2 \operatorname{Sin}(2 t-\pi)+1
$$

Given the equation:

$$
\mathbf{y}=\mathbf{A S i n}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Here is a more complete graph.

$$
y=2 \operatorname{Sin}(2 t-\pi)+1
$$

Given the equation:

$$
\mathbf{y}=\mathbf{A S i n}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

The 'Basic Cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=\mathbf{0}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Here is a more complete graph.

$$
y=2 \operatorname{Sin}(2 t-\pi)+1
$$

Given the equation:

$$
\mathbf{y}=\mathbf{A S i n}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

The 'Basic Cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$ and ends on the mid-line when $B t+C=2 \pi$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Here is a more complete graph.

$$
y=2 \operatorname{Sin}(2 t-\pi)+1
$$

Given the equation:

$$
\mathbf{y}=\mathbf{A S i n}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

The 'Basic Cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$ and ends on the mid-line when $B t+C=2 \pi$. The 'Basic Cycle' is $2 \pi /|\mathrm{B}|$ units long.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line:

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

The basic cycle ends on the mid-line when $\mathrm{t}+\pi / 3=2 \pi$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

The basic cycle ends on the mid-line

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

The basic cycle ends on the mid-line when $\mathrm{t}+\pi / 3=2 \pi \rightarrow \mathrm{t}=5 \pi / 3$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

The basic cycle ends on the mid-line when $\mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathrm{t}=5 \pi / 3$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

The basic cycle ends on the mid-line when $\mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathrm{t}=5 \pi / 3 \quad-$
The basic cycle intersects the mid-line 'half-way' through the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.
Mid-line: $\mathbf{y}=\mathbf{- 2}$
The basic cycle starts on the mid-line when $\mathrm{t}+\pi / 3=0 \rightarrow \mathrm{t}=-\pi / 3$

The basic cycle ends on the mid-line when $\mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathrm{t}=5 \pi / 3 \quad-$
The basic cycle intersects the mid-line 'half-way' through the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

$$
\mathrm{A}=-0.5
$$

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

$$
\mathrm{A}=-0.5
$$

\rightarrow The amplitude is 0.5 .

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

$$
\mathrm{A}=-0.5
$$

- The amplitude is 0.5 .
\rightarrow The basic cycle is 'below the mid-line' for the first half of the cycle and above the mid-line for the second $-\ldots-\ldots$ half of the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

$$
\mathrm{A}=-0.5
$$

- The amplitude is 0.5 .
\rightarrow The basic cycle is 'below the mid-line' for the first half of the cycle and above the mid-line for the second $--_{-}$ half of the cycle.

Variations of the Sine Function

In the above sine graph, the basic cycle starts on the mid-line when $t=0$, and it ends on the mid-line when $t=2 \pi$.

Now, consider the equation $\mathbf{y}=\mathbf{- 0 . 5 S i n}(\mathbf{t}+\pi / 3)-\mathbf{2}$.

Variations of the Sine Function

Here is a more complete graph.

$$
y=-0.5 \operatorname{Sin}(t+\pi / 3)-2
$$

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The 'basic cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The 'basic cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$.
(6) The 'basic cycle' ends on the mid-line when $\mathrm{Bt}+\mathrm{C}=2 \pi$.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The 'basic cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$.
(6) The 'basic cycle' ends on the mid-line when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(7) The 'basic cycle' intersects the mid-line 'half-way' through the cycle.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The 'basic cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$.
(6) The 'basic cycle' ends on the mid-line when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(7) The 'basic cycle' intersects the mid-line 'half-way' through the cycle.
(8) The period of the 'sine wave' is $2 \pi /|\mathrm{B}|$.

Variations of the Sine Function

Consider the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The 'basic cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$.
(6) The 'basic cycle' ends on the mid-line when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(7) The 'basic cycle' intersects the mid-line 'half-way' through the cycle.
(8) The period of the 'sine wave' is $2 \pi /|\mathrm{B}|$.

Variations of the Sine Function

Consider the equation $y=A \sin (B t+C)+D$.
(1) The amplitude of the 'sine wave' is the absolute value of A .
(2) If A >0, then the basic cycle is 'above the mid-line' for the first half of the cycle and below the mid-line for the second half of the cycle.
(3) If A <0, then the basic cycle is 'below the mid-line' for the first half of the cycle and 'above the mid-line' for the second half of the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The 'basic cycle' starts on the mid-line when $\mathrm{Bt}+\mathrm{C}=0$.
(6) The 'basic cycle' ends on the mid-line when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(7) The 'basic cycle' intersects the mid-line 'half-way' through the cycle.
(8) The period of the 'sine wave' is $2 \pi /|\mathrm{B}|$.

We will now consider Variations of the Cosine Function.

Variations of the Cosine Function

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.
Its period is 2π units.

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.
Its period is 2π units. Its amplitude is 1 unit.

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.
Its period is 2π units. Its amplitude is 1 unit.
The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.
Its period is 2π units. Its amplitude is 1 unit.
The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.
Consider the equation $\mathrm{y}=\mathrm{ACos}(\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.
Its period is 2π units. Its amplitude is 1 unit.
The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.
Consider the equation $\mathrm{y}=\mathrm{A} \operatorname{Cos}(\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
We will consider the significance of each of the constants A, B, C, and D.

Variations of the Cosine Function

This is the 'basic cycle' of the cosine function.
Its period is 2π units. Its amplitude is 1 unit.
The line $\mathrm{y}=0$, the t axis, is the mid-line of the curve.
Consider the equation $\mathrm{y}=\mathrm{A} \operatorname{Cos}(\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
We will consider the significance of each of the constants A, B, C, and D, starting with A.

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$
Here are two other examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$
In these examples, the amplitude $=\mathrm{A}$.

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

If $\mathrm{A}<0$, then the graph 'flips' over the mid-line.

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

$y=(-1 / 2) \operatorname{Cos} t$

If $\mathrm{A}<0$, then the graph 'flips' over the mid-line.

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos}(t)$ In these examples, the amplitude $=\mathrm{A}$. What if $\mathrm{A}<0$?

$y=(-1 / 2) \operatorname{Cos} t$

If $\mathrm{A}<0$, then the graph 'flips' over the mid-line.
The amplitude is equal to the absolute value of A.

Variations of the Cosine Function

Variations of the Cosine Function

Consider the equation $\mathrm{y}=\mathrm{A} \cos (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If $\mathrm{A}>0$,

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=\mathrm{A} \cos (\mathrm{Bt}+\mathrm{C})+\mathrm{D}$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If $\mathrm{A}<0$,

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.

We will next consider the significance of the constant D.

Variations of the Cosine Function

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two examples (showing the 'basic cycle' only).

$$
y=(1 / 2) \cos t+2
$$

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two more examples (showing the 'basic cycle' only).

Variations of the Cosine Function

We will start with equations of the form $y=A \operatorname{Cos} t+D$.
Here are two more examples (showing the 'basic cycle' only).

Clearly, the value of D determines the mid-line of the graph.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $\mathrm{y}=\mathrm{D}$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $y=D$.

We will next consider the significance of the constants B and C .

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $\mathrm{t}=2 \pi$.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $t=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(B t+C)+D
$$

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $\mathrm{t}=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2} \pi$.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $\mathrm{t}=0$ and ends when $\mathrm{t}=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2 \pi}$. The 'basic cycle' of the Sine function starts and ends on the midline.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $t=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2} \pi$. The 'basic cycle' of the Sine function starts and ends on the midline. The Cosine function is different.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $t=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2} \pi$. The 'basic cycle' of the Sine function starts and ends on the midline. The Cosine function is different. This makes graphing the Cosine function more complex.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $t=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2} \pi$. The 'basic cycle' of the Sine function starts and ends on the midline. The Cosine function is different. This makes graphing the Cosine function more complex. Try to see, once the mid-line is determined, how the value of A is used to find the starting, the ending, and the midpoint of the basic cycle.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $t=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2} \pi$. The 'basic cycle' of the Sine function starts and ends on the midline. The Cosine function is different. This makes graphing the Cosine function more complex. Try to see, once the mid-line is determined, how the value of A is used to find the starting, the ending, and the midpoint of the basic cycle. Also realize that the basic cycle does intersect the mid-line at the first and the third quarter points.

Variations of the Cosine Function

In the Cosine graph above, the 'basic cycle' starts when $t=0$ and ends when $t=2 \pi$. Consider the more general equation below.

$$
\mathbf{y}=\mathbf{A C o s}(\mathbf{B t}+\mathbf{C})+\mathbf{D}
$$

When planning this graph, it is important to understand that the 'basic cycle' starts when $\mathbf{B t}+\mathbf{C}=\mathbf{0}$ and ends when $\mathbf{B t}+\mathbf{C}=\mathbf{2} \pi$. The 'basic cycle' of the Sine function starts and ends on the midline. The Cosine function is different. This makes graphing the Cosine function more complex. Try to see, once the mid-line is determined, how the value of A is used to find the starting, the ending, and the midpoint of the basic cycle. Also realize that the basic cycle does intersect the mid-line at the first and the third quarter points. We will do 4 sample problems.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts $\underline{2}$ units above the mid-line

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0$.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \rightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi$.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 2 units below the mid-line when $2 \mathrm{t}-\pi=\pi$.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 2 units below the mid-line when $2 \mathrm{t}-\pi=\pi \rightarrow \mathrm{t}=\pi$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$
The 'basic cycle' is 2 units below the $-\frac{-\pi}{1}$ mid-line when $2 \mathrm{t}-\pi=\pi \rightarrow \mathrm{t}=\pi$

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$
The 'basic cycle' is 2 units below the $-\frac{-\pi}{1}$ mid-line when $2 \mathrm{t}-\pi=\pi . \rightarrow \mathrm{t}=\pi$

Here is the 'basic cycle'.

Variations of the Cosine Function

Consider the equation $y=2 \operatorname{Cos}(2 t-\pi)+\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{1}$
The 'basic cycle' starts 2 units above the mid-line when $2 \mathrm{t}-\pi=0 \longrightarrow \mathrm{t}=\pi / 2$
The 'basic cycle' ends 2 units above the mid-line when $2 \mathrm{t}-\pi=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 2 units below the $-\pi$ mid-line when $2 \mathrm{t}-\pi=\pi . \rightarrow \mathrm{t}=\pi$

Here is the 'basic cycle'.

Variations of the Cosine Function

Here is a more complete graph.

$$
y=2 \operatorname{Cos}(2 t-\pi)+1
$$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-0.5 \operatorname{Cos}(\mathrm{t}+\pi / 2)-\mathbf{1}$.

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(t+\pi / 2)-1$.

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(t+\pi / 2)-\mathbf{1}$.
Mid-line:

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(t+\pi / 2)-1$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(t+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(t+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(t+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$
The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0$.

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$
The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$
The 'basic cycle' starts 0.5 units below the mid-line when $t+\pi / 2=0 \rightarrow t=-\pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$
The 'basic cycle' starts 0.5 units below the mid-line when $t+\pi / 2=0 \rightarrow t=-\pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $t+\pi / 2=2 \pi$.

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line when $\mathrm{t}+\pi / 2=\pi$.

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line when $\mathrm{t}+\pi / 2=\pi \rightarrow \mathrm{t}=\pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line when $\mathrm{t}+\pi / 2=\pi \rightarrow \mathrm{t}=\pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 1}
$$

The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line when $\mathrm{t}+\pi / 2=\pi \rightarrow \mathrm{t}=\pi / 2$

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$
The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line when $\mathrm{t}+\pi / 2=\pi \rightarrow \mathrm{t}=\pi / 2$

Here is the 'basic cycle'.

Variations of the Cosine Function

Consider the equation $y=-0.5 \operatorname{Cos}(\mathbf{t}+\pi / 2)-\mathbf{1}$.
Mid-line: $\mathbf{y}=\mathbf{- 1}$
The 'basic cycle' starts 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=0 \rightarrow \mathrm{t}=-\pi / 2$
The 'basic cycle' ends 0.5 units below the mid-line when $\mathrm{t}+\pi / 2=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units above the mid-line when $\mathrm{t}+\pi / 2=\pi \rightarrow \mathrm{t}=\pi / 2$

Here is the 'basic cycle'.

Variations of the Cosine Function

Here is a more complete graph.

$$
y=-0.5 \operatorname{Cos}(t+\pi / 2)-1
$$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-\boldsymbol{\operatorname { C o s }}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2}$.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-\boldsymbol{\operatorname { C o s }}(\mathbf{0 . 5 t}+\pi / 3)+2$.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-\boldsymbol{\operatorname { C o s }}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} . \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-\boldsymbol{\operatorname { C o s }}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} . \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-\boldsymbol{\operatorname { C o s }}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} . \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts $\underline{1 \text { unit below the mid-line }}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts $\underline{1 \text { unit below the mid-line }}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts $\underline{1 \text { unit below the mid-line when } 0.5 \mathrm{t}+\pi / 3=0 \text {. } . \text {. }}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends 1 units below the mid-line

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts $\underline{1 \text { unit below }}$ the mid-line when $0.5 \mathrm{t}+\pi / 3=0 . \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends 1 units below the mid-line when $0.5 \mathrm{t}+\pi / 3=2 \pi$.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathbf{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below the mid-line when } 0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}, ~}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below the mid-line when } 0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}, ~}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathbf{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below }}$ the mid-line when $0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}$
The 'basic cycle' is 1 unit above the mid-line

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathbf{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below }}$ the mid-line when $0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}$
The 'basic cycle' is 1 unit above the mid-line

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below }}$ the mid-line when $0.5 t+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below }}$ the mid-line when $0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \mathbf{C o s}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below }}$ the mid-line when $0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \operatorname{Cos}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below the mid-line when } 0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}, ~}$
The 'basic cycle' is $\underline{1 \text { unit above the mid-line when } 0.5 \mathbf{t}+\pi / 3=\pi \rightarrow \mathbf{t}=\mathbf{4} \pi / \mathbf{3}, ~(t)}$
Here is the 'basic cycle'.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=-1 \mathbf{C o s}(\mathbf{0 . 5 t}+\pi / 3)+\mathbf{2} \rightarrow$ Mid-line: $\mathbf{y}=\mathbf{2}$
The 'basic cycle' starts 1 unit below the mid-line when $0.5 \mathrm{t}+\pi / 3=0 \rightarrow \mathbf{t}=\mathbf{- 2 \pi / 3}$
The 'basic cycle' ends $\underline{1 \text { units below the mid-line when } 0.5 \mathrm{t}+\pi / 3=2 \pi . \rightarrow \mathbf{t}=\mathbf{1 0} \pi / \mathbf{3}, ~}$
The 'basic cycle' is $\underline{1 \text { unit above the mid-line when } 0.5 \mathbf{t}+\pi / 3=\pi \rightarrow \mathbf{t}=\mathbf{4} \pi / \mathbf{3}, ~(t)}$
Here is the 'basic cycle'.

Variations of the Cosine Function

Here is a more complete graph.

$$
y=-\operatorname{Cos}(0.5 t+\pi / 3)+2
$$

Variations of the Cosine Function

Consider the equation $\mathrm{y}=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

Variations of the Cosine Function

Consider the equation $\mathrm{y}=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.
Mid-line: $\mathbf{y}=\mathbf{- 0 . 5}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.
Mid-line: $\mathbf{y}=\mathbf{- 0 . 5}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(1.5 t-\pi / 4)-\mathbf{0 . 5}$.
Mid-line: $\mathbf{y}=\mathbf{- 0 . 5}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0$.

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi$.

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi . \rightarrow \mathrm{t}=\mathbf{3} \pi / \mathbf{2}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi . \rightarrow \mathrm{t}=\mathbf{3} \pi / \mathbf{2}$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi . \rightarrow \mathrm{t}=\mathbf{3} \pi / \mathbf{2}$

The 'basic cycle' is 0.5 units below the mid-line

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi . \rightarrow \mathrm{t}=\mathbf{3} \pi / \mathbf{2}$

The 'basic cycle' is 0.5 units below the mid-line when $1.5 \mathrm{t}-\pi / 4=\pi$.

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi . \rightarrow \mathrm{t}=\mathbf{3} \pi / \mathbf{2}$

The 'basic cycle' is 0.5 units below the mid-line when $1.5 \mathrm{t}-\pi / 4=\pi$.

- $\mathbf{t}=5 \pi / 6$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi \rightarrow \mathbf{t}=\mathbf{3} \pi / \mathbf{2}$

The 'basic cycle' is 0.5 units below the mid-line when $1.5 \mathrm{t}-\pi / 4=\pi$.
$\rightarrow t=5 \pi / 6$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi . \rightarrow \mathrm{t}=\mathbf{3} \pi / \mathbf{2}$

The 'basic cycle' is 0.5 units below the mid-line when $1.5 \mathrm{t}-\pi / 4=\pi$.

- $t=5 \pi / 6$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the
Here is the basic cycle. mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi \rightarrow \mathrm{t}=3 \pi / 2$

The 'basic cycle' is 0.5 units below the mid-line when $1.5 \mathrm{t}-\pi / 4=\pi$.
$\rightarrow \mathrm{t}=5 \pi / 6$

Variations of the Cosine Function

Consider the equation $y=0.5 \operatorname{Cos}(\mathbf{1 . 5 t}-\pi / 4)-\mathbf{0 . 5}$.

$$
\text { Mid-line: } \mathbf{y}=\mathbf{- 0 . 5}
$$

The 'basic cycle' starts 0.5 units above the mid-line when $1.5 \mathrm{t}-\pi / 4=0 \rightarrow \mathbf{t}=\pi / \mathbf{6}$

The 'basic cycle' ends 0.5 units above the
Here is the basic cycle. mid-line when $1.5 \mathrm{t}-\pi / 4=2 \pi \rightarrow \mathbf{t}=\mathbf{3} \pi / \mathbf{2}$

The 'basic cycle' is 0.5 units below the mid-line when $1.5 \mathrm{t}-\pi / 4=\pi$.
$\rightarrow \mathrm{t}=5 \pi / 6$

Variations of the Cosine Function

Here is a more complete graph.

$$
y=0.5 \operatorname{Cos}(1.5 t-\pi / 4)-0.5
$$

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $\mathrm{y}=\mathrm{D}$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The basic cycle starts when $\mathrm{Bt}+\mathrm{C}=0$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A.
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The basic cycle starts when $\mathrm{Bt}+\mathrm{C}=0$ and ends when $\mathrm{Bt}+\mathrm{C}=2 \pi$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The basic cycle starts when $\mathrm{Bt}+\mathrm{C}=0$ and ends when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(6) The period of the 'cosine wave' $=2 \pi /|\mathrm{B}|$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If A <0, then the basic cycle starts at its minimum value and ends at its minimum value. It is at its maximum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The basic cycle starts when $\mathrm{Bt}+\mathrm{C}=0$ and ends when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(6) The period of the 'cosine wave' $=2 \pi /|\mathrm{B}|$.

Variations of the Cosine Function

Consider the equation $y=A \cos (B t+C)+D$.
(1) The amplitude of the 'cosine wave' is the absolute value of A .
(2) If A >0, then the basic cycle starts at its maximum value and ends at its maximum value. It is at its minimum value "half-way' through the cycle. It crosses the mid-line $1 / 4$ way through the cycle and again $3 / 4$ way through the cycle.
(3) If $\mathrm{A}<0$, then the $\square \square$ alue and ends at its minimum valu cycle. It crosses the

The Endway' through the and again $3 / 4$ way through the cycle.
(4) The equation of the mid-line is $y=D$.
(5) The basic cycle starts when $\mathrm{Bt}+\mathrm{C}=0$ and ends when $\mathrm{Bt}+\mathrm{C}=2 \pi$.
(6) The period of the 'cosine wave' $=2 \pi /|\mathrm{B}|$.

