Precalculus Worksheet \#3 Unit 8 page 1

Find two set of polar coordinates (r, θ) for each of the following points. You are given the Cartesian (rectangular) coordinates of the point (\mathbf{x}, \mathbf{y}). Express θ in degrees where $\mathbf{0} \leq \theta<\mathbf{3 6 0}{ }^{\circ}$. Where appropriate, round to three significant digits. Show your work.

1. $(0,5)$ \qquad 2. $(-2,0)$ \qquad
2. $(3,3)$ \qquad 4. $(-4,-4)$ \qquad
\qquad
3. $(6,-8)$ \qquad 6. $(-12,5)$ \qquad

7. $(3,1)$

\qquad 8. (2, -5) \qquad

You are given polar coordinates of the point (r, θ). Find the Cartesian coordinates (x, y). Where necessary, round to three significant digits.
9. $\left(2,270^{\circ}\right)$ \qquad 10. $\left(8,60^{\circ}\right)$ \qquad
11. $\left(6,180^{\circ}\right)$ \qquad 12. $\left(3,150^{\circ}\right)$ \qquad
13. $\left(-7,45^{\circ}\right)$ \qquad 14. $\left(-8,300^{\circ}\right)$ \qquad
15. (1.414, $\left.225^{\circ}\right)$ \qquad 16. $\left(10,170^{\circ}\right)$ \qquad

Precalculus Worksheet \#3 Unit 8 page 2

Convert each of the following equations to polar form.

17. $\mathrm{x}^{2}+\mathrm{y}^{2}=36$
18. $\mathrm{y}=-\mathrm{x}$
19. $x=4$
20. $y=2$

Convert each of the following polar equations to rectangular form.
21. $\theta=2 \pi / 3$
22. $r=2$
23. $\mathbf{r}=4 \cos \theta$
24. $\mathbf{r}=4 \csc \theta$

Graph each of the following equations.
25. $r=5$

26. $\theta=2 \pi / 3$

Precalculus Worksheet \#3 Unit 8 page 3

Graph each of the following equations.
27. $\mathbf{r}=6 \cos \theta$

28. $\mathbf{r}=3+3 \cos \theta$

29. $\mathbf{r}=3 \cos 2 \theta$

30. $\mathbf{r}=4 \sin 3 \theta$

Precalculus Worksheet \#3 Unit 8 page 4

Find the eccentricity, e, of each of the following, and use it to identify each equation as that of an ellipse, a hyperbola, or a parabola. Show your work.
31. $r=\frac{4}{1-\cos \theta}$
32. $\mathbf{r}=\frac{\mathbf{6}}{3+2 \sin \theta}$
33. $\mathbf{r}=\frac{\mathbf{5}}{2+4 \cos \theta}$

Sketch the plane curves represented by each of the following parametric equations, showing the orientation (direction). Also, write an equation that gives the corresponding relationship between x and y (eliminate the parameter). Show your work neatly organized. Assume that $\mathrm{t} \geq 0$.
34.

$$
\begin{aligned}
& \mathbf{x}=\mathbf{2 t} \\
& \mathbf{y}=\mathbf{t}+\mathbf{1}
\end{aligned}
$$

35. $x=3 \cos t$
$y=5 \sin t$

