Precalculus Wo	orksheet #3 Unit 8	page 1	
----------------	--------------------	--------	--

Find two set of polar coordinates (r, θ) for each of the following points. You are given the Cartesian (rectangular) coordinates of the point (x, y). Express θ in degrees where $0 \le \theta < 360^{\circ}$. Where appropriate, round to three significant digits. Show your work.

1. (0, 5)

2. (-2, 0) _____

3. (3, 3) _____

4. (-4, -4) _____

5. (6, -8) _____

6. (-12, 5)

7. (3, 1) _____

8. (2, -5)

You are given polar coordinates of the point (r, θ) . Find the Cartesian coordinates (x, y). Where necessary, round to three significant digits.

9. (2, 270°)

10. (8, 60°)

11. (6, 180°)

12. (3, 150°) _____

13. (-7, 45°) _____

14. (-8, 300°) _____

15. (1.414, 225°)

16. (10, 170°) _____

Convert each of the following equations to polar form.

17.
$$x^2 + y^2 = 36$$

18.
$$y = -x$$

19.
$$x = 4$$

20.
$$y = 2$$

Convert each of the following polar equations to rectangular form.

21.
$$\theta = 2\pi/3$$

22.
$$r = 2$$

23.
$$r = 4\cos\theta$$

24.
$$r = 4\csc \theta$$

Graph each of the following equations.

25.
$$r = 5$$

26.
$$\theta = 2\pi/3$$

Precalculus Worksheet #3 Unit 8 page 3

Graph each of the following equations.

27.
$$r = 6\cos\theta$$

28.
$$r = 3 + 3\cos\theta$$

29.
$$r = 3\cos 2\theta$$

30.
$$r = 4\sin 3\theta$$

Precalculus Worksheet #3 Unit 8 page 4

Find the eccentricity, e, of each of the following, and use it to identify each equation as that of an ellipse, a hyperbola, or a parabola. Show your work.

31.
$$r = \frac{4}{1 - \cos \theta}$$

31.
$$r = \frac{4}{1 - \cos \theta}$$
 32. $r = \frac{6}{3 + 2 \sin \theta}$ 33. $r = \frac{5}{2 + 4 \cos \theta}$

33.
$$r = \frac{5}{2 + 4 \cos \theta}$$

Sketch the plane curves represented by each of the following parametric equations, showing the orientation (direction). Also, write an equation that gives the corresponding relationship between x and y (eliminate the parameter). Show your work neatly organized. Assume that t > 0.

34.
$$x = 2t$$

 $y = t + 1$

35.
$$x = 3 \cos t$$
$$y = 5 \sin t$$

