Precalculus Worksheet \#2 Unit 6 page 1

\qquad
Whenever necessary, round off to 3 significant digits.
Given the magnitude and the direction angle of vector v, write the component form of v. 1. $\|v\|=40 ; \theta=85^{\circ} \quad v=$ \qquad 2. $\|v\|=\mathbf{1 2 0} ; \theta=\mathbf{1 2 5}^{\circ} \mathbf{v}=$ \qquad

Given the component form of \mathbf{v}, find its magnitude and direction angle.
3. $\mathbf{v}=\langle\mathbf{8 . 2}, 3.1\rangle$
$\|\mathbf{v}\|=$ \qquad $\theta=$ \qquad 4. $v=\langle-2.1,-10.3\rangle$
$\|\mathbf{v}\|=$ \qquad $\theta=$ \qquad

In each case, a vector v is given. Find the component form of the unit vector in the direction of v.
5. $v=\langle-1.5,5.8\rangle$
6. $\mathbf{v}=\mathbf{3 i}+5 \mathbf{j}$

Solve the following problem.
7. Forces of $\mathbf{1 0 0}$ pounds and $\mathbf{1 2 0}$ pounds act on an object. If the resultant force has a magnitude of $\mathbf{1 6 0}$ pounds, then what is the angle between the forces?

Precalculus Worksheet \#2 Unit 6 page 2

Solve the following problems. Whenever necessary, round off to three significant digits.
8. Three forces with magnitudes of $\mathbf{8 0}$ pounds, $\mathbf{4 0}$ pounds, and $\mathbf{2 0}$ pounds act on an object at angles of $5 \mathbf{0}^{\circ}, 130^{\circ}$, and $\mathbf{2 0 0}$, respectively (relative to the positive \mathbf{x}-axis). What is the magnitude and the direction angle of the resultant force.
9. A 500 pound weight is supported by the two cables (A and B) shown in the diagram below. Find the tension in each cable. (The diagram is not drawn to scale.)

