Solve each of the following quadratic inequalities. Represent the solution set as an interval or as the union of intervals. (Express irrational numbers rounded to two significant digits.)
2. $8 x^{2}+15 x+7 \geq 0$

$$
\begin{gathered}
8 x^{2}+15 x+7=0 \\
(8 x+7)(x+1)=0 \\
8 x+7=0 \text { or } x+1=0 \\
x=-7 / 8 \text { or } x=-1 \\
r_{1}=-1 \quad r_{2}=-7 / 8 \\
8 x^{2}+15 x+7 \geq 0 \\
x \leq-1 \text { or } x \geq-7 / 8 \\
S=(-\infty,-1] \cup[-7 / 8, \infty)
\end{gathered}
$$

9. $x^{2}+(2 x+1)^{2}>(3 x-1)^{2}$
$x^{2}+4 x^{2}+4 x+1>9 x^{2}-6 x+1$
$5 x^{2}+4 x+1>9 x^{2}-6 x+1$
$0>4 x^{2}-10 x$
$4 x^{2}-10 x<0$
$4 x^{2}-10 x=0$
$2 x(2 x-5)=0$
$2 \mathrm{x}=0$ or $2 \mathrm{x}-5=0$
$x=0$ or $x=5 / 2$

$$
\mathrm{r}_{1}=\mathbf{0} \quad \mathrm{r}_{2}=2.5
$$

$$
4 x^{2}-10 x<0
$$

$$
0<x<2.5
$$

$$
S=(0,2.5)
$$

