General Algebra 2 Worksheet \#8 Unit 9 Selected Solutions

2. Sue wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If he has a total of 2000 feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Consider the diagram shown. Let x represent the length of the rectangular plot of land. Let y represent its width.
Clearly, the total amount of fencing required is $2 x+4 y$.
Once again, to maximize the area, we must represent the area as a function of one variable.

$$
\begin{array}{ll}
A=x y \text { where } & 2 x+4 y=2000 \\
& 4 y=-2 x+2000 \\
& y=-0.5 x+500
\end{array}
$$

Therefore,

$$
\begin{aligned}
& A=\mathbf{f}(\mathbf{x})=\mathbf{x}(\mathbf{- 0 . 5 x}+\mathbf{5 0 0}) \\
& A=\mathbf{f}(x)=\mathbf{- 0 . 5} x^{2}+\mathbf{5 0 0 x}
\end{aligned}
$$

The maximum area corresponds to the vertex of this function. There are two common methods used to find the vertex.

At the vertex, $x=-B / 2 A$.

$$
x=-500 /(-1)=500
$$

$$
\begin{gathered}
A=-\mathbf{0 . 5}\left(\mathrm{x}^{2}-1000 x\right) \\
\left.A-125,000=-\mathbf{0 . 5 (x ^ { 2 } - 1 0 0 0 x}+250,000\right) \\
A-125,000=-\mathbf{0 . 5}(x-500)^{2}
\end{gathered}
$$

The maximum area is

$$
f(500)=-0.5(500)^{2}+500(500)=125,000
$$

The vertex is $(500, \underline{125,000})$.

For maximum area, $x=500$.

$$
y=-0.5(500)+500=-250+500=250
$$

The plot with maximum area is 500 feet long and 250 feet wide.
The plot will have a maximum area of $\mathbf{1 2 5 , 0 0 0}$ square feet.

