General Algebra 2 Worksheet \#6 Unit 9 Selected Solutions

6. Sam wants to fence in a rectangular plot of land and to divide it into four equal areas using three lengths of fencing parallel to two opposite sides. If he has a total of $\mathbf{8 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Consider the diagram shown. Let x represent the length of the rectangular plot of land. Let y represent its width.
Clearly, the total amount of fencing required is $2 x+5 y$.
Once again, to maximize the area, we must represent the area as a function of one variable.

$$
\begin{aligned}
& \mathrm{A}=\mathrm{xy} \text { where } \quad \begin{array}{l}
2 \mathrm{x}
\end{array} \mathrm{+5y}=\mathbf{8 0 0} \\
& \mathbf{5 y}=-\mathbf{2 x}+\mathbf{8 0 0} \\
& \mathrm{y}
\end{aligned}=\mathbf{- 0 . 4 x}+\mathbf{1 6 0} .
$$

Therefore,

$$
\begin{aligned}
& A=f(x)=x(-0.4 x+160) \\
& A=f(x)=\mathbf{0 . 4} x^{2}+\mathbf{1 6 0 x}
\end{aligned}
$$

The maximum area corresponds to the vertex of this function. There are two common methods used to find the vertex.

At the vertex, $x=-B / 2 A$

$$
x=-160 /(-0.8)=200
$$

The maximum area is

$$
\begin{gathered}
A=-\mathbf{0 . 4}\left(\mathrm{x}^{2}-400 \mathrm{x}\right) \\
A-\mathbf{1 6 , 0 0 0}=-\mathbf{0 . 4}\left(\mathrm{x}^{2}-\mathbf{4 0 0 x}+\mathbf{4 0 , 0 0 0}\right) \\
A-\mathbf{1 6 , 0 0 0}=\mathbf{- 0 . 4 (x - 2 0 0})^{2}
\end{gathered}
$$

$$
f(200)=-0.4(200)^{2}+160(200)=16,000 \quad \text { The vertex is }(200, \underline{16,000}) .
$$

For maximum area, $x=200$.

$$
\mathrm{y}=-\mathbf{0 . 4 (2 0 0)}+\mathbf{1 6 0}=-\mathbf{8 0}+\mathbf{1 6 0}=\mathbf{8 0} .
$$

The plot with maximum area is $\mathbf{2 0 0}$ feet long and 80 feet wide.
The plot will have a maximum area of $\mathbf{1 6 , 0 0 0}$ square feet.

