Use an appropriate second degree function to solve each of the following problems. Show your work and your solutions neatly organized.

1. What is the maximum area of a rectangle whose perimeter is $\mathbf{3 0}$ inches?
2. Find the number that when added to its own square will give a minimum sum.
3. The summer theater charges $\$ 4$ per ticket and has a full house of 400 people nightly. The manager estimates that the ticket sales would decrease by 50 people for every $\$ 1$ increase in the ticket price. What price per ticket would maximize the total income?

Use an appropriate second degree function to solve each of the following problems. Show your work and your solutions neatly organized.
4. A long piece of sheet metal 24 inches wide is to be made into a rain gutter with a rectangular cross section by bending up a vertical strip along each side. How many inches should be bent up along each side so that the gutter formed has a maximum cross-sectional area?
5. A rectangular pen is made using 100 meters of fencing on three sides. The fourth side is a stone wall. What is the maximum area of such an enclosure?
6. Sam wants to fence in a rectangular plot of land and to divide it into four equal areas using three lengths of fencing parallel to two opposite sides. If he has a total of $\mathbf{8 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

