General Algebra II Lesson #1 Unit 7 Class Worksheet #1 For Worksheet #1

Definitions and Notation

Definitions and Notation

Square Root

Definitions and Notation

Square Root

Definitions and Notation

Square Root The number k is a square root of N

Definitions and Notation

Square Root The number k is a square root of N if and only if

Definitions and Notation

Square Root The number k is a square root of N if and only if $k^2 = N$.

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if k² = N.

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if k² = N.

Definitions and Notation

Square Root

The number k is a square root of N if and only if k² = N.

Definitions and Notation

Square Root

The number k is a square root of N if and only if k² = N.

Cube Root The number k is a cube root of N

Definitions and Notation

Square Root

The number k is a square root of N if and only if k² = N.

Cube Root The number k is a cube root of N if and only if

Definitions and Notation

Square Root

The number k is a square root of N if and only if k² = N.

Definitions and Notation

Square Root

The number k is a square root of N if and only if k² = N.

Cube Root

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if k² = N.

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if k² = N.

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if k² = N. Using this definition,

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if k² = N. Using this definition, it is clear that the number 9,

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example,

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots.

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3,

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$

Definitions and Notation

Square Root

Cube Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. **Cube Root**

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition,

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8,

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example,

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9,

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3.

Cube Root
Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>,

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative,

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number. The notation that is <u>used</u> for the principal

square root of N is \sqrt{N} .

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{\mathbf{N}} = \mathbf{k}$

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number. The notation that is <u>used</u> for the principal

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$. This leads us to the definition of cube root.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$. This leads us to the definition of cube root.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$. This leads us to the definition of cube root.

 $\sqrt[3]{N} = k$ if and only if

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$. This leads us to the definition of cube root.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is used for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$. This leads us to the definition of cube root.

Definitions and Notation

Square Root

The number k is a square root of N if and only if $k^2 = N$. Using this definition, it is clear that the number 9, for example, has two square roots. They are 3 and -3, since $3^2 = 9$ and $(-3)^2 = 9$. If you used a calculator to find the square root of 9, you would get 3. That is because the calculator is programmed to give the <u>principal</u>, or the non-negative, square root of a number.

The notation that is <u>used</u> for the principal square root of N is \sqrt{N} . This leads us to the definition of principal square root.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Cube Root

The number k is a cube root of N if and only if $k^3 = N$. Using this definition, it is clear that the number 8, for example, has one cube root. <u>The</u> cube root of 8 is 2, since $2^3 = 8$.

The notation that is used for the cube root of N is $\sqrt[3]{N}$. This leads us to the definition of cube root.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

General Notation For Roots

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

General Notation For Roots (Also Called Radicals)

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

General Notation For Roots (Also Called Radicals)

a∕ N

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.

The 'check mark' part of the symbol is called the radical sign.

Definitions and Notation

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.

The horizontal bar is called the vinculum.

N, which can be a number or an algebraic expression, is called the radicand.

The 'check mark' part of the symbol is called the radical sign.

Definitions and Notation

The number that is used for the index <u>always</u> agrees with the exponent in the definition.

Definitions and Notation

The number that is used for the index <u>always</u> agrees with the exponent in the definition. If the index number is 'missing', it is understood to be a 2.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

Definitions and Notation

Square Root

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} =$$

Definitions and Notation

Square Root

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9}=3$$
Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} =$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} =$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k such that $k^2 = -4$.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k such that $k^2 = -4$. Clearly, the number we seek does not exist in the real number system. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k such that $k^2 = -4$. Clearly, the number we seek does not exist in the real number system. Numbers like $\sqrt{-4}$ do exist however. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k such that $k^2 = -4$. Clearly, the number we seek does not exist in the real <u>number</u> system. Numbers like $\sqrt{-4}$ do exist however. They are elements of another set of numbers called the <u>imaginary numbers</u>. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k such that $k^2 = -4$. Clearly, the number we seek does not exist in the real number system. Numbers like $\sqrt{-4}$ do exist however. They are elements of another set of numbers called the <u>imaginary numbers</u>. For now, we are only dealing with <u>real</u> <u>numbers</u>. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

We need a number k such that $k^2 = -4$. Clearly, the number we seek does not exist in the real number system. Numbers like $\sqrt{-4}$ do exist however. They are elements of another set of numbers called the <u>imaginary numbers</u>. For now, we are only dealing with <u>real</u> <u>numbers</u>. Therefore, the radicand can not be negative. **Cube Root**

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} =$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square',

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3 \text{, since } 3^2 = 9.$$

$$\sqrt{0} = 0 \text{, since } 0^2 = 0.$$

$$\sqrt{-4} = ????$$

$$\sqrt{5} = ????$$

If the radicand is a 'perfect square',

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3 \text{, since } 3^2 = 9.$$

$$\sqrt{0} = 0 \text{, since } 0^2 = 0.$$

$$\sqrt{-4} = ????$$

$$\sqrt{5} = ????$$

If the radicand is a 'perfect square', then the problem 'comes out even'.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

→
$$\sqrt{9} = 3$$
, since $3^2 = 9$.
→ $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} = ????$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

$$\sqrt[3]{N} = k$$
 if and only if $k^3 = N$.

Consider the following.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} =$$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

$\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following. $\sqrt[3]{8} = 2$, since $2^3 = 8$.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$, since $2^3 = 8$. $\sqrt[3]{0} =$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$, since $2^3 = 8$. $\sqrt[3]{0} = 0$
Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$. Consider the following. $\sqrt[3]{8} = 2$, since $2^3 = 8$. $\sqrt[3]{0} = 0$, since $0^3 = 0$.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$. Consider the following. $\sqrt[3]{8} = 2$, since $2^3 = 8$.

0.

$$\sqrt[3]{0} = 0$$
, since $0^3 = \sqrt[3]{-8} =$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$, since $2^3 = 8$. $\sqrt[3]{0} = 0$, since $0^3 = 0$. $\sqrt[3]{-8} = -2$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$, since $2^3 = 8$. $\sqrt[3]{0} = 0$, since $0^3 = 0$. $\sqrt[3]{-8} = -2$, since $(-2)^3 = -8$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

$$\sqrt[3]{8} = 2$$
, since $2^3 = 8$.
 $\sqrt[3]{0} = 0$, since $0^3 = 0$.
 $\sqrt[3]{-8} = -2$, since $(-2)^3 = -8$
 $\sqrt[3]{10} =$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} =$$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

If the radicand is a 'perfect cube',

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$. Consider the following. $\rightarrow \sqrt[3]{8} = 2$, since $2^3 = 8$. $\rightarrow \sqrt[3]{0} = 0$, since $0^3 = 0$. $\rightarrow \sqrt[3]{-8} = -2$, since $(-2)^3 = -8$ $\sqrt[3]{10} = ???$ $\sqrt[3]{-10} = ???$

If the radicand is a 'perfect cube',

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$. Consider the following. $\rightarrow \sqrt[3]{8} = 2$, since $2^3 = 8$. $\rightarrow \sqrt[3]{0} = 0$, since $0^3 = 0$. $\rightarrow \sqrt[3]{-8} = -2$, since $(-2)^3 = -8$ $\sqrt[3]{10} = ???$ $\sqrt[3]{-10} = ???$

If the radicand is a 'perfect cube', then the problem 'comes out even'.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$. Consider the following. $\rightarrow \sqrt[3]{8} = 2$, since $2^3 = 8$. $\rightarrow \sqrt[3]{0} = 0$, since $0^3 = 0$. $\rightarrow \sqrt[3]{-8} = -2$, since $(-2)^3 = -8$ $\sqrt[3]{10} = ???$ $\sqrt[3]{-10} = ???$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.)

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.)

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube, then the cube root represents an <u>irrational number</u>.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2, \text{ since } 2^3 = 8.$$

$$\sqrt[3]{0} = 0, \text{ since } 0^3 = 0.$$

$$\sqrt[3]{-8} = -2, \text{ since } (-2)^3 = -8$$

$$\sqrt[3]{10} = ???$$

$$\sqrt[3]{-10} = ???$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube, then the cube root represents an <u>irrational number</u>. In this case, the cube root can either be approximated using a calculator,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$, since 2³ = 8. $\sqrt[3]{0} = 0$, since 0³ = 0. $\sqrt[3]{-8} = -2$, since (-2)³ = -8 → $\sqrt[3]{10} \approx 2.154$ → $\sqrt[3]{-10} \approx -2.154$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube, then the cube root represents an <u>irrational number</u>. In this case, the cube root can either be approximated using a calculator,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2$, since 2³ = 8. $\sqrt[3]{0} = 0$, since 0³ = 0. $\sqrt[3]{-8} = -2$, since (-2)³ = -8 → $\sqrt[3]{10} \approx 2.154$ → $\sqrt[3]{-10} \approx -2.154$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube, then the cube root represents an <u>irrational number</u>. In this case, the cube root can either be approximated using a calculator, or the exact value can be written using <u>standard</u> <u>radical form</u>.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

 $\sqrt[3]{8} = 2 \text{, since } 2^3 = 8.$ $\sqrt[3]{0} = 0 \text{, since } 0^3 = 0.$ $\sqrt[3]{-8} = -2 \text{, since } (-2)^3 = -8$ $\sqrt[3]{10} \approx 2.154$ $\sqrt[3]{-10} \approx -2.154$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube, then the cube root represents an <u>irrational number</u>. In this case, the cube root can either be approximated using a calculator, or the exact value can be written using <u>standard</u> <u>radical form</u>.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Consider the following.

$$\sqrt{9} = 3$$
, since $3^2 = 9$.
 $\sqrt{0} = 0$, since $0^2 = 0$.
 $\sqrt{-4} = ????$
 $\sqrt{5} \approx 2.236$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a <u>rational number</u>.) If the radicand is positive and not a perfect square, then the square root represents an <u>irrational number</u>. In this case, the square root can either be approximated using a calculator, or the exact value can be written using <u>standard radical form</u>. **Cube Root**

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Consider the following.

$$\sqrt[3]{8} = 2$$
, since 2³ = 8.
 $\sqrt[3]{0} = 0$, since 0³ = 0.
 $\sqrt[3]{-8} = -2$, since (-2)³ = -8
 $\sqrt[3]{10} \approx 2.154$
 $\sqrt[3]{-10} \approx -2.154$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a <u>rational number</u>.) If the radicand is not a perfect cube, then the cube root represents an <u>irrational number</u>. In this case, the cube root can either be approximated using a calculator, or the exact value can be written using <u>standard</u> <u>radical form</u>.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Definitions and Notation

Square Root

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary If the radicand is a perfect square,

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

Definitions and Notation

Square Root

Cube Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>.

Cube Root

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'. **Cube Root**

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square,

Cube Root

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root

Definitions and Notation

Square Root

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary If the radicand is a perfect cube,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

If the radicand is a perfect cube, then you will be asked to give the exact value.
Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using <u>standard radical form</u>.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using <u>standard radical form</u>.

The cube root of a positive number is positive,

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using <u>standard radical form</u>.

The cube root of a positive number is positive, and the cube root of a negative number is negative.

Definitions and Notation

Square Root

 $\sqrt{N} = k$ if and only if $k^2 = N$ and $k \ge 0$.

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an <u>imaginary</u> <u>number</u>. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using <u>standard radical form</u>.

Cube Root

 $\sqrt[3]{N} = k$ if and only if $k^3 = N$.

Summary

If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using <u>standard radical form</u>.

The cube root of a positive number is positive, and the cube root of a negative number is negative.

Square Root and Cube Root Standard Radical Form

Standard Radical Form

Square Root

Cube Root

Standard Radical Form

Square Root

Cube Root

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number.

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1,

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'.

Standard Radical Form

Square Root

Cube Root

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{5}$$
 $\sqrt{6}$ $3\sqrt{10}$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{5}$$
 $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{5}$$
 $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

In each case,

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

In each case, the <u>radicand</u>

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

In each case, the <u>radicand</u>

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

In each case, the <u>radicand</u> is a <u>whole</u> <u>number</u>

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

In each case, the <u>radicand</u> is a <u>whole</u> <u>number</u> that is <u>not</u> a perfect square

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

 $\sqrt{5}$ $\sqrt{6}$ $3\sqrt{10}$ $2\sqrt{3}$ $\sqrt{15}$

In each case, the <u>radicand</u> is a <u>whole</u> <u>number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1.

Standard Radical Form

Square Root

Cube Root

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1,

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'.

Standard Radical Form

Square Root

Cube Root

Standard Radical Form

Square Root

Cube Root

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36}$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{36} = \sqrt{4 \cdot 9}$$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{36} = \sqrt{4 \cdot 9} \stackrel{?}{=} \sqrt{4} \cdot \sqrt{9}$$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{36} = \sqrt{4 \cdot 9} \stackrel{?}{\stackrel{?}{=}} \sqrt{4} \cdot \sqrt{9}$$

Standard Radical Form

Square Root

Cube Root

$$\sqrt{36} = \sqrt{4 \cdot 9} \stackrel{?}{=} \sqrt{4} \cdot \sqrt{9}$$
Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$$

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general,

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general, if <u>a</u> and <u>b</u> represent whole numbers,

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general, if <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}}$

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general, if <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} =$

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general, if <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general, if <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect square and <u>does</u> have perfect square factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9}$

In general, if <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Notice that this property is written so that it can be used to <u>factor</u> a square root expression.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number.

Standard Radical Form

Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1,

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

$\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. **Cube Root**

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

In each case,

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

In each case, the <u>radicand</u>

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

In each case, the <u>radicand</u>

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

In each case, the <u>radicand</u> is a <u>whole</u> <u>number</u>

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

In each case, the <u>radicand</u> is a <u>whole</u> <u>number</u> that is <u>not</u> a perfect cube

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{5}$$
 $\sqrt[3]{6}$ $3\sqrt[3]{10}$ $2\sqrt[3]{3}$ $\sqrt[3]{15}$

In each case, the <u>radicand</u> is a <u>whole</u> <u>number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect cube

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1,

Standard Radical Form

Square Root

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If <u>a</u> and <u>b</u> represent integers,

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b}$
Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{\mathbf{a} \cdot \mathbf{b}} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{\mathbf{a} \cdot \mathbf{b}} = \sqrt[3]{\mathbf{a}}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Cube Root

If the radicand is <u>not</u> a perfect cube and <u>does</u> have perfect cube factor(s) greater than 1, then the expression is <u>not</u> in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{\mathbf{a} \cdot \mathbf{b}} = \sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}$.

Notice that this property is written so that it can be used to <u>factor</u> a cube root expression.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Cube Root

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

1.
$$\sqrt{25} =$$

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}.$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} =$ _____

25 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} =$ _____

25 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$

25 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

27 is a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} =$$

27 is a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2. $\sqrt[3]{27} = 3$

27 is a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} = \underline{3}$$

27 is a perfect cube.

 $27 = 3^3$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} = 3$$

27 is a perfect cube.
27 = 3³

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{25} = 5$ 25 is a perfect square. $25 = 5^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{27} = 3$$

27 is a perfect cube.

 $27 = 3^3$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} =$ _____

144 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} =$ _____

144 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$

144 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = \underline{12}$ 144 is a perfect square. $144 = 12^2$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4.
$$\sqrt[3]{-125} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4. $\sqrt[3]{-125} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4. $\sqrt[3]{-125} =$ _____

-125 is a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4. $\sqrt[3]{-125} =$ _____

-125 is a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4. $\sqrt[3]{-125} = -5$

-125 is a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4. $\sqrt[3]{-125} = \underline{-5}$ -125 is a perfect cube. $-125 = (-5)^3$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.
If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

4. $\sqrt[3]{-125} = \underline{-5}$ -125 is a perfect cube. $-125 = (-5)^3$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

3. $\sqrt{144} = 12$ 144 is a perfect square. $144 = 12^{2}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

-125 is a perfect cube. -125 = (-5)³

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

50 is not a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

50 is not a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

Notice that the radicand has at least one perfect square factor greater than 1.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} =$$

Notice that the radicand has at least one perfect square factor greater than 1.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{50} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} =$$

 $\sqrt{25} \cdot \sqrt{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} =$$

 $\sqrt{25} \cdot \sqrt{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} =$$

 $\sqrt{25} \cdot \sqrt{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = _$$

 $\sqrt{25} \cdot \sqrt{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \underline{5}$$

 $\sqrt{25} \cdot \sqrt{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = 5\sqrt{2}$$

 $\sqrt{25} \cdot \sqrt{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6. $\sqrt[3]{24} =$

24 is not a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6. $\sqrt[3]{24} =$ _____

24 is not a perfect cube.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

Notice that the radicand has at least one perfect cube factor greater than 1.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6

Notice that the radicand has at least one perfect cube factor greater than 1.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$5. \quad \sqrt[3]{24} = \underline{\qquad}$$
$$\sqrt[3]{8}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{c} 6. \quad \sqrt[3]{24} = ___\\ \sqrt[3]{8} \cdot \sqrt[3]{3} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$6. \quad \sqrt[3]{24} = ___$$
$$\sqrt[3]{8} \cdot \sqrt[3]{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} = _$$

 $\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} = _____{\frac{3}{\sqrt{8}}} \cdot \sqrt[3]{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

5.
$$\sqrt[3]{24} = 2$$

 $\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} = 2\sqrt[3]{3}$$

 $\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} = \frac{2\sqrt[3]{3}}{\sqrt[3]{8} \cdot \sqrt[3]{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.
If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{50} = \frac{5\sqrt{2}}{\sqrt{25} \cdot \sqrt{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{24} = \frac{2\sqrt[3]{3}}{\sqrt[3]{8} \cdot \sqrt[3]{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

12 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8. $\sqrt[3]{-54} =$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

12 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = _$$

 $\sqrt{4} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = _$$

 $\sqrt{4} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = _$$

 $\sqrt{4} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \underline{2}$$

 $\sqrt{4} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = 2\sqrt{3}$$

 $\sqrt{4} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{12} = 2\sqrt{3}$ $\sqrt{4} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8. $\sqrt[3]{-54} =$ _____

-54 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8. $\sqrt[3]{-54} =$

-54 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

 $\sqrt[3]{-27}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square

root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$3. \quad \sqrt[3]{-54} = \underline{\qquad}$$
$$\sqrt[3]{-27} \cdot \sqrt[3]{2}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$8. \quad \sqrt[3]{-54} = \underline{\qquad}$$
$$\sqrt[3]{-27} \cdot \sqrt[3]{2}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{c} \mathbf{8.} \quad \sqrt[3]{\mathbf{-54}} = \underline{} \\ \sqrt[3]{\mathbf{-27}} \cdot \sqrt[3]{\mathbf{2}} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} =$$

 $\sqrt[3]{-27} \cdot \sqrt[3]{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \underline{-3}$$

 $\sqrt[3]{-27} \cdot \sqrt[3]{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = -3\sqrt[3]{2}$$

 $\sqrt[3]{-27} \cdot \sqrt[3]{2}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27} \cdot \sqrt[3]{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8. $\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = -3\sqrt[3]{2}$$

 $\sqrt[3]{-27} \cdot \sqrt[3]{2}$
What if we factored out $\sqrt[3]{27}$?

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = 3$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.
If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = \underline{3\sqrt[3]{-2}}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = \frac{3\sqrt[3]{-2}}{\sqrt[3]{-2}}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = \frac{3\sqrt[3]{-2}}{\sqrt[3]{-2}}$

Although this answer is equivalent to the correct answer,

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = 3\sqrt[3]{-2}$

Although this answer is equivalent to the correct answer, it is <u>not</u> in standard radical form.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = 3\sqrt[3]{-2}$

Although this answer is equivalent to the correct answer, it is <u>not</u> in standard radical form. The radicand,

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = 3\sqrt[3]{-2}$

Although this answer is equivalent to the correct answer, it is <u>not</u> in standard radical form. The radicand, -2,

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent integers, then $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27}} \cdot \sqrt[3]{2}$$

What if we factored out $\sqrt[3]{27}$?
 $\sqrt[3]{-54} = \sqrt[3]{27} \cdot \sqrt[3]{-2} = 3\sqrt[3]{-2}$

Although this answer is equivalent to the correct answer, it is <u>not</u> in standard radical form. The radicand, -2, is not a <u>whole number</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27} \cdot \sqrt[3]{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{12} = \frac{2\sqrt{3}}{\sqrt{4} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{-54} = \frac{-3\sqrt[3]{2}}{\sqrt[3]{-27} \cdot \sqrt[3]{2}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} =$ _____

48 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} =$ _____

48 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} =$ _____

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} =$$

 $\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} =$$

 $\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} =$$

 $\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = _$$

 $\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \underline{4}$$

 $\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = 4\sqrt{3}$$

 $\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$ 48 has two perfect square factors greater than 1.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$ 48 has two perfect square factors greater than 1. They are 4 and 16.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$ 48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$ 48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = \underline{2\sqrt{12}}$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = \underline{2\sqrt{12}}$

Although this is equivalent to the correct answer,

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.
If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = \underline{2\sqrt{12}}$

Although this is equivalent to the correct answer, it is <u>not</u> in standard radical form.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = \underline{2\sqrt{12}}$

Although this is equivalent to the correct answer, it is <u>not</u> in standard radical form. The radicand,

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = \underline{2\sqrt{12}}$

Although this is equivalent to the correct answer, it is <u>not</u> in standard radical form. The radicand, 12,

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

 $\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = \underline{2\sqrt{12}}$

Although this is equivalent to the correct answer, it is <u>not</u> in standard radical form. The radicand, 12, has a perfect square factor greater than 1.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and <u>does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.</u>

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} = =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} = 2$$
$$= 2$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} = 2$$
$$= 2$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} = 2 \cdot \sqrt{4}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2 \sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$=$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2 \cdot \sqrt{3}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2 \cdot \sqrt{3} =$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2 \cdot \sqrt{3} = 4$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2 \cdot \sqrt{3} = 4\sqrt{3}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2 \cdot \sqrt{3} = 4\sqrt{3}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = 4\sqrt{3}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$
$$= 2 \cdot 2 \cdot \sqrt{3} = 4\sqrt{3}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{48} = \frac{4\sqrt{3}}{4\sqrt{3}}$

 $\sqrt{16} \cdot \sqrt{3}$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$\sqrt{48} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} =$$
It saves time !!
$$= 2 \cdot \sqrt{4} \cdot \sqrt{3} =$$

$$= 2 \cdot 2 \cdot \sqrt{3} = 4\sqrt{3}$$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

0.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10. $\sqrt[3]{32} =$ _____

32 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10. $\sqrt[3]{32} =$ _____

32 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

0.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{c} \mathbf{0.} \quad \sqrt[3]{32} = \underline{} \\ \sqrt[3]{8} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{c} \mathbf{0.} \quad \sqrt[3]{32} = \underline{} \\ \sqrt[3]{8} \cdot \sqrt[3]{4} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{ccc} \mathbf{0}. & \sqrt[3]{32} = _ \\ & \sqrt[3]{8} \cdot \sqrt[3]{4} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{ccc} \mathbf{0} \cdot & \sqrt[3]{32} = \underline{} \\ \sqrt[3]{8} \cdot \sqrt[3]{4} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{c} \mathbf{0.} \quad \sqrt[3]{32} = \underline{}\\ \sqrt[3]{8} \cdot \sqrt[3]{4} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{ccc} 0. & \sqrt[3]{32} = \underline{2} \\ & \sqrt[3]{8} \cdot \sqrt[3]{4} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} = \frac{2\sqrt[3]{4}}{\sqrt[3]{8}} \cdot \sqrt[3]{4}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.
If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} = \frac{2\sqrt[3]{4}}{\sqrt[3]{8} \cdot \sqrt[3]{4}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{48} = \frac{4\sqrt{3}}{\sqrt{16} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{32} = \frac{2\sqrt[3]{4}}{\sqrt[3]{8} \cdot \sqrt[3]{4}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{108} =$ _____

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{108} =$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{108} =$ _____

108 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{108} =$ _____

108 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{108} =$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{108} =$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{108} = _$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{108} =$$

 $\sqrt{36} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \underline{\qquad}$$
$$\sqrt{36} \cdot \sqrt{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = _$$
$$\sqrt{36} \cdot \sqrt{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = _$$
$$\sqrt{36} \cdot \sqrt{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \underline{6}$$

$$\sqrt{36} \cdot \sqrt{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \underline{6\sqrt{3}}$$
$$\sqrt{36} \cdot \sqrt{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36}} \cdot \sqrt{3}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[3]{-80} =$

-80 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[3]{-80} =$

-80 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{-80} =$$

1

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{-80} =$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{-80} =$$

 $\sqrt[3]{-8} \cdot \sqrt[3]{10}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[3]{-80} =$ _____ $\sqrt[3]{-8} \cdot \sqrt[3]{10}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[3]{-80} =$ ______ $\sqrt[3]{-8} \cdot \sqrt[3]{10}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[3]{-80} =$ ______

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$\begin{array}{c} 12. \quad \sqrt[3]{-80} = -2 \\ \hline \sqrt[3]{-8} \cdot \sqrt[3]{10} \end{array}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} = -2\sqrt[3]{10}$$

 $\sqrt[3]{-8} \cdot \sqrt[3]{10}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} = \frac{-2\sqrt[3]{10}}{\sqrt[3]{-8} \cdot \sqrt[3]{10}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

$$11. \quad \sqrt{108} = \frac{6\sqrt{3}}{\sqrt{36} \cdot \sqrt{3}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the <u>largest</u> perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If <u>a</u> and <u>b</u> represent whole numbers, then

 $\sqrt{\mathbf{a} \cdot \mathbf{b}} = \sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[3]{-80} = \frac{-2\sqrt[3]{10}}{\sqrt[3]{-8} \cdot \sqrt[3]{10}}$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

Step 2: Evaluate the cube root of the perfect cube factor.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$
 14. $\sqrt[3]{375} + \sqrt[3]{24} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Step 1: Express each square root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>. If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Cube Root

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

=

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Step 1: Express each square root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

=

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Step 1: Express each square root in standard radical form.
Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

$$13. \sqrt{12} + \sqrt{27} = \underline{\qquad}$$
$$= \sqrt{4} \cdot \sqrt{3}$$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
=

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
=

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= 2

14. $\sqrt[3]{375} + \sqrt[3]{24} =$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} +$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} +$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$

14. $\sqrt[3]{375} + \sqrt[3]{24} =$

Step 1: Express each square root in standard radical form.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$
 $2x$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$
 $2x +$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$
 $2x +$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$
 $2x + 3x$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$
 $2x + 3x =$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} =$
 $2x + 3x = 5x$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} =$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$
 $2x + 3x = 5x$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$
 $2x + 3x = 5x$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Step 1: Express each square root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14. $\sqrt[3]{375} + \sqrt[3]{24} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14. $\sqrt[3]{375} + \sqrt[3]{24} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14. $\sqrt[3]{375} + \sqrt[3]{24} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

$$14. \sqrt[3]{375} + \sqrt[3]{24} = _$$
$$= \sqrt[3]{125}$$
Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

$$14. \sqrt[3]{375} + \sqrt[3]{24} = _$$
$$= \sqrt[3]{125} \cdot \sqrt[3]{3}$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} +$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} +$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= 5

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} +$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} +$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$
5x

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$
5x

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$
 $5x + 2x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} =$
 $5x + 2x = 7x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} =$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} = 7\sqrt[3]{3}$
 $5x + 2x = 7x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} = 7\sqrt[3]{3}$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} = 7\sqrt[3]{3}$
 $5x + 2x = 7x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

= $\sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$
= $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

14.
$$\sqrt[3]{375} + \sqrt[3]{24} = 7\sqrt[3]{3}$$

= $\sqrt[3]{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$
= $5\sqrt[3]{3} + 2\sqrt[3]{3} = 7\sqrt[3]{3}$

Standard Radical Form

Square Root If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

13.
$$\sqrt{12} + \sqrt{27} = 5\sqrt{3}$$

 $= \sqrt{4} \cdot \sqrt{3} + \sqrt{9} \cdot \sqrt{3} =$

$$= \sqrt{3}\sqrt{125} \cdot \sqrt[3]{3} + \sqrt[3]{8} \cdot \sqrt[3]{3} =$$

$$= 5\sqrt[3]{3} + 2\sqrt[3]{3} = 7\sqrt[3]{3}$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$
 16. $\sqrt[3]{54} - \sqrt[3]{16} =$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

=

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} -$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} -$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

_

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= 10

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} -$

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} -$

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4$

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$
10x

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$
10x

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$
 $10x - 4x$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} =$
 $10x - 4x = 6x$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} =$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$
 $10x - 4x = 6x$

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = 6\sqrt{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$
 $10x - 4x = 6x$

16.
$$\sqrt[7]{54} - \sqrt[7]{16} =$$

3

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = 6\sqrt{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

$$16. \sqrt[3]{54} - \sqrt[3]{16} = _$$
$$= \sqrt[3]{27} \cdot \sqrt[3]{2}$$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16. $\sqrt[3]{54} - \sqrt[3]{16} =$ = $\sqrt[3]{27} \cdot \sqrt[3]{2} -$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} -$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16. $\sqrt[3]{54} - \sqrt[3]{16} =$ = $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2}$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

 $= \sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2}$

16. $\sqrt[3]{54} - \sqrt[3]{16} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

=

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= 3

Step 1: Express each cube root in standard radical form.
Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} -$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} -$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$

Step 1: Express each cube root in standard radical form.Step 2: Combine like terms.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$

Step 1: Express each cube root in standard radical form.Step 2: Combine like terms.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$
 $3x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$
 $3x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$
 $3x - 2x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$
 $3x - 2x = 1x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} =$
 $3x - 2x = x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} =$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} = \sqrt[3]{2}$
 $3x - 2x = x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any

perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} = \frac{\sqrt[3]{2}}{\sqrt[3]{2}}$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} = \sqrt[3]{2}$
 $3x - 2x = x$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root If the radicand is a whole number that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then

Cube Root

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1, then the square root is in standard radical form. the cube root is in standard radical form.

> **General Algebra II Class Worksheet #1** Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{2}$$

= $\sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$
= $10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

16.
$$\sqrt[3]{54} - \sqrt[3]{16} = \frac{\sqrt[3]{2}}{\sqrt[3]{2}}$$

= $\sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$
= $3\sqrt[3]{2} - 2\sqrt[3]{2} = \sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

General Algebra II Class Worksheet #1 Unit 7

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{200} - \sqrt{32} = \frac{6\sqrt{2}}{16\sqrt{2}}$$

 $= \sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$

$$= \sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$$

$$= 3\sqrt[3]{2} - 2\sqrt[3]{2} = \sqrt[3]{2}$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.

Standard Radical Form

Square Root

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect square and does <u>not</u> have any perfect square factors greater than 1, then the square root is in <u>standard radical form</u>.

Cube Root

16. $\sqrt[3]{54} - \sqrt[3]{16} = \sqrt[3]{2}$

 $= 3\sqrt[3]{2} - 2\sqrt[3]{2} = \sqrt[3]{2}$

 $= \sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{8} \cdot \sqrt[3]{2} =$

If the <u>radicand</u> is a <u>whole number</u> that is <u>not</u> a perfect cube and does <u>not</u> have any perfect cube factors greater than 1, then the cube root is in <u>standard radical form</u>.

Good luck on your homework !!

15.
$$\sqrt{200} - \sqrt{32} = 6\sqrt{2}$$

$$= \sqrt{100} \cdot \sqrt{2} - \sqrt{16} \cdot \sqrt{2} =$$

$$= 10\sqrt{2} - 4\sqrt{2} = 6\sqrt{2}$$

Step 1: Express each square root in standard radical form.

Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.