General Algebra II Lesson #5 Unit 6 Class Worksheet #5 For Worksheet #6

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$

$$V =$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$
 $V = (12 \text{ ft.})($

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$

 $V = (12 \text{ ft.})(6 \text$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$

 $V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$
 $V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$
 $V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$
 $V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$
 $V = 360$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

$$V = LWH$$
 $V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$
 $V = 360 \text{ cu. ft.}$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? _____

$$V = LWH$$

$$V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$$

$$V = 360$$
 cu. ft.

Time = 360 cu. ft. \div 9 cu. ft. per min.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? _____

$$V = LWH$$

$$V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$$

$$V = 360$$
 cu. ft.

Time = 360 cu. ft. \div 9 cu. ft. per min.

$$Time = 40 minutes$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

$$V = LWH$$

$$V = (12 \text{ ft.})(6 \text{ ft.})(5 \text{ ft.})$$

$$V = 360$$
 cu. ft.

Time = 360 cu. ft. \div 9 cu. ft. per min.

Time = 40 minutes

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	
4	
8	
12 16	
20	
24	
28 32	
36	
40	

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0 4 8 12 16 20 24 28 32 36	
40	

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t f(t) When $t = 0$,	
8	
12 16	
20 24	
28 32 36	
36 40	

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

the tank is full.	
$t \mid f(t)$	When $t = 0$, the tank is empty.
0	
8 12	
16 20	
24 28	
32 36	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	
4 8	
12 16	
20 24	
28	
32 36	
40	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

f(t)
0

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0 4 8 12 16 20 24 28 32 36 40	0

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4 8	
8 12	
16	
20 24	
28	
32	
36 40 ♦	
, 10	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

· 40 |

t	f(t) W	hen t = 0, the tank is empty.
0 4	Th.	e water is 0 inches deep.
0 4 8 12	\mathbf{W}	hen t = 40,
16 20	, ,	
24 28 32		
36		

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t f(t)	When $t = 0$,
$\begin{bmatrix} 0 & 0 \\ 4 & \end{bmatrix}$	The water is
4 8 12 16	When $t = 40$
$\begin{bmatrix} 20 \\ 24 \end{bmatrix}$	
28 32	
36	

When t = 0, the tank is empty. The water is 0 inches deep. When t = 40, the tank is full.

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t f(t)	When $t = 0$, the tank is empty.
$\begin{bmatrix} 0 \\ 4 \end{bmatrix}$	The water is 0 inches deep.
0 4 8 12 16 20 24 28 32 36	When $t = 40$, the tank is full.
20 24	The water is 60 inches deep.
28 32	
36	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

<u>t</u>	f(t)	When
0 4	0	The w
4 8 12 16		When
16 20 24 28		The w
32		
$\Rightarrow \begin{array}{c} 36 \\ 40 \end{array}$	60	

When t = 0, the tank is empty. The water is 0 inches deep. When t = 40, the tank is full. The water is 60 inches deep.

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

_t	$\int f(t)$	
0	0	
4 8		
8 12		
16		
20 24		
28		
32 36		
40	60	

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	
0	0	
4 8		
12		
16 20		
24		
28 32		
36 40	60	
40	UU	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	<u> </u>
0	0	
4 8		
12		
16 20		
24 28		
32		
36 40	60	
• •	1 ~ ~	•

The water depth increases 60 inches

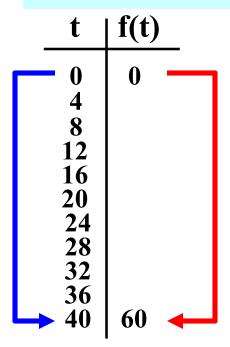
A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

	t	$\int \mathbf{f}(\mathbf{t})$	<u> </u>
	- 0	0	
	4 8		
	8 12		
	16		
	20 24		
	24 28		
	32 36		
L,	> 40	60	4

The water depth increases 60 inches

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).


- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

	t	$\int f(t)$	<u> </u>
	- 0	0	\neg
	4 8		
	12 16		
	20		
	24 28		
	32 36		
L	40	60	←

The water depth increases 60 inches in 40 minutes.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

The water depth increases 60 inches in 40 minutes.

It increases at

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	<u> </u>
- 0	0	$\overline{}$
4 8		
12		
16 20		
24		
28 32		
36	60	
40	60	

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

_	t	f(t))
	0	0	
	4 8		
	8 12		
	16		
	20 24		
	28		
	32 36		
	40	60	←

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

$t \mid f(t)$	The water depth increases
0 4 8 12	60 inches in 40 minutes.
	It increases at 1.5 inches
16 20 24 28 32 36 40 60	per minute.
32 36	It increases 6 inches
40 60	every 4 minutes.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	
0	0	
8		
8 12		
16		
20 24		
28		
32 36		
30 40	60	

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	
0	0	
0 4 8	0 6	
8 12		
16		
20 24		
28		
32 36		
30 40	60	

. ...

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	I(t)	
0	0	
4 8	0 6	
8 12		
16		
20 24		
28		
32 36		
40	60	

. ...

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4 8	6
8 12	12
16	
20	
24 28	
32	
36	60
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
	6
8	12
12	
16	
20 24	
24 28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	_
0	0	•
0 4 8	6	
	12	
12 16	18	
20		
24		
28		
32 36		
40	60	

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	1(t)	
0	0	
0 4 8	6	
	12	
12 16	18	
20		
24 28		
28 32		
36 36		
40	60	

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	The water depth increases
0 4	0 6	60 inches in 40 minutes.
8 12 16	12 18 24	It increases at 1.5 inches
16 20 24 28 32 36 40		per minute.
32 36	60	It increases 6 inches
40	60	every 4 minutes.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	_
0	0	
0 4 8	6	
8	12	
12	18	
16	24	
20		
24		
28		
32 36		
40	60	

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

<u>t</u>	f(t)	_
0 4 8 12 16 20 24 28 32 36 40	0 6 12 18 24 30	•
, ,		

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	I(t)
0 4 8 12 16 20 24	0 6 12 18 24 30
28 32 36 40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0 4 8 12	0 6 12 18
$ \begin{array}{c} 16\\20\\24\\28\\32 \end{array} $	24 30 36
36 40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	(t)
0 4 8 12 16 20 24 28	0 6 12 18 24 30 36
32 36 40	60

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

<u>t</u>	<u>f(t)</u>
0 4 8 12 16 20 24 28 32 36 40	0 6 12 18 24 30 36 42
40	ן טט

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

<u>t</u>	f(t)	
0 4 8 12 16 20 24 28 32 36 40	0 6 12 18 24 30 36 42	

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	
0 4 8 12 16 20 24 28	1(t) 0 6 12 18 24 30 36 42 48	
32 36 40	60	

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	
0	0	
4	6	
8	12	
12	18	
16	24	
20	30	
24 28	36 42	
32	48	
36	10	
40	60	

. 6/1

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

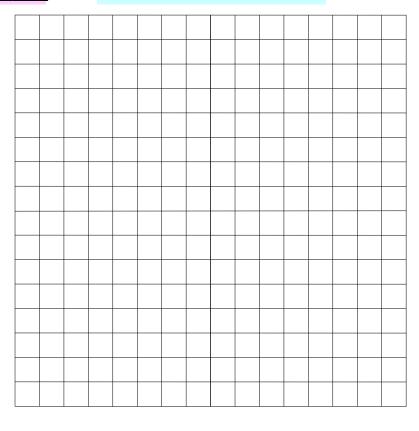
<u>t</u>	f(t)	_
0	0	-
	6	
4 8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48 54	
→ 36		
40	60	

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

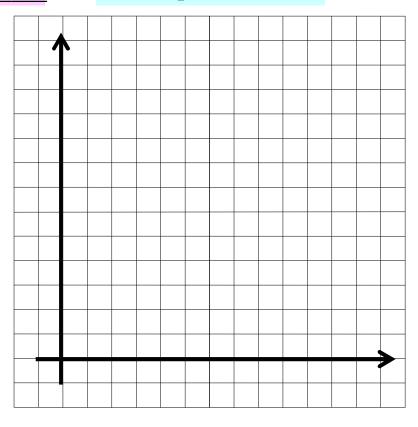
- 1. How long will it take to fill the tank? 40 minutes
- 2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.


_t	(f(t)
0	0
4 8	6
12	12 18
16	24
20 24	30 36
28	42
32 36	48 54
40	60

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

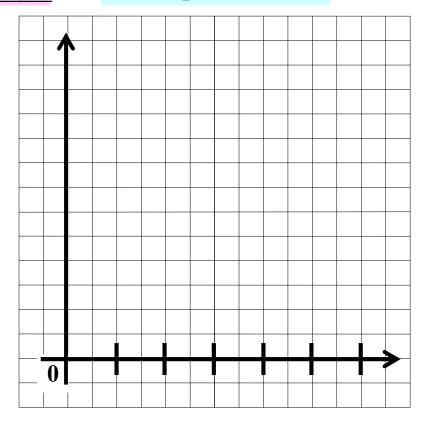
1. How long will it take to fill the tank? 40 minutes

3. Graph function f.


t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
_	_

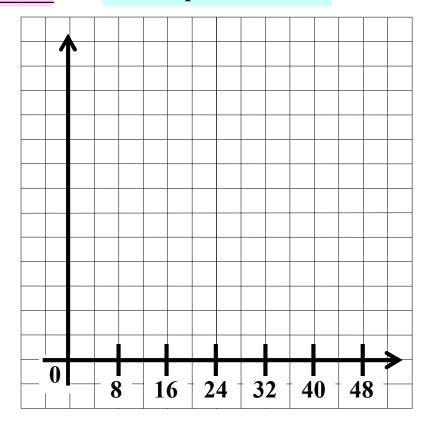
A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.


t	f(t)
0 4	0 6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

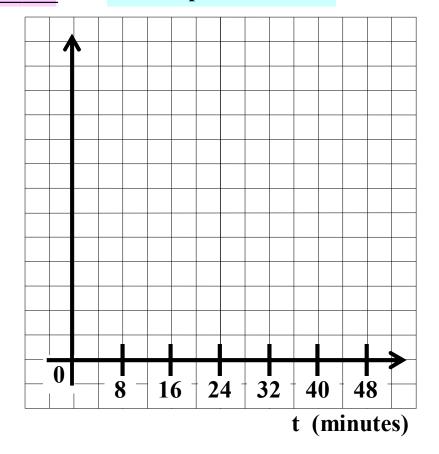
- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.


t	f(t)
0	0
4 8	6
12 16	18 24
20	30
24 28	36 42
32 36	48 54
40	60

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

t	f(t)
0	0
4 8	6
12	12 18
16	24
20 24	30 36
28	42
32 36	48 54
40	60

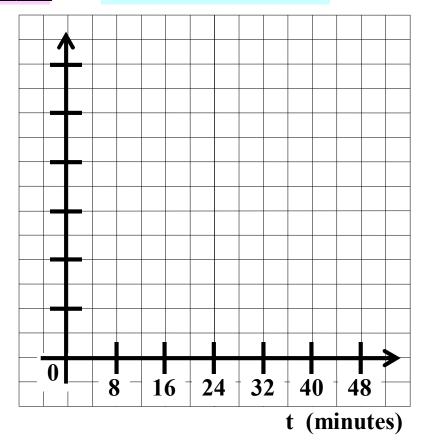


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

<u>t</u>	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28 32	42 48
36	54
40	60
••	

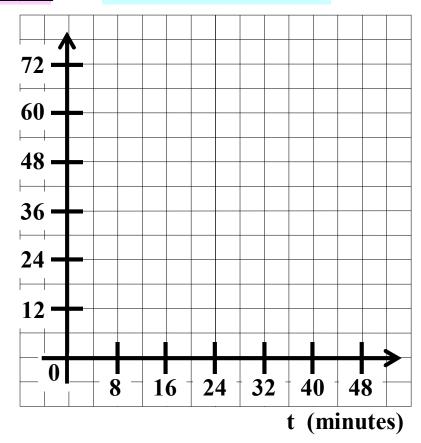


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

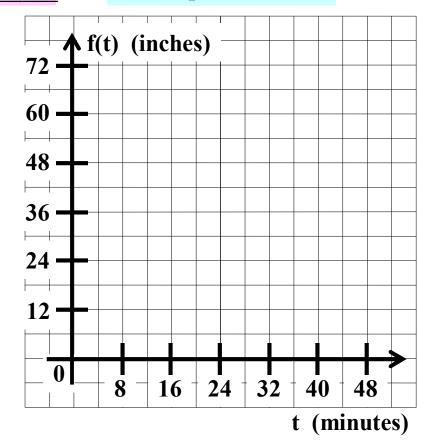


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32 36	48 54
40	60
TU	00

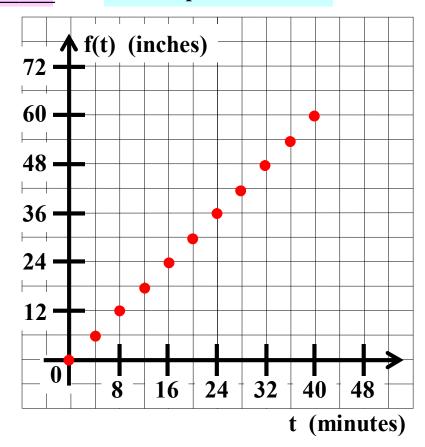


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	$\overline{30}$
24	36
28	42
32	48
36	54
40	60

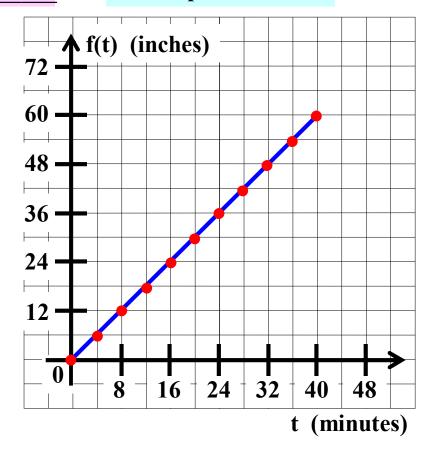


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

<u>t</u>	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

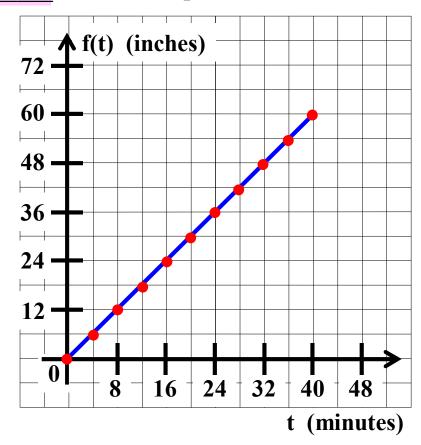


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

<u>t</u>	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48 54
36 40	60
40	00

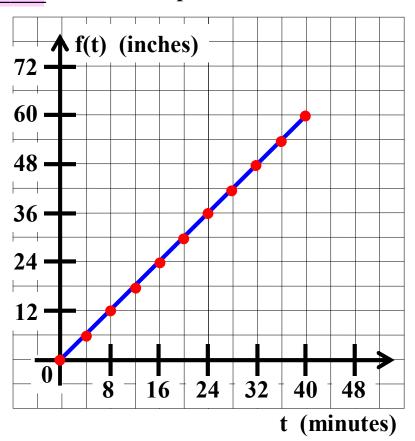


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

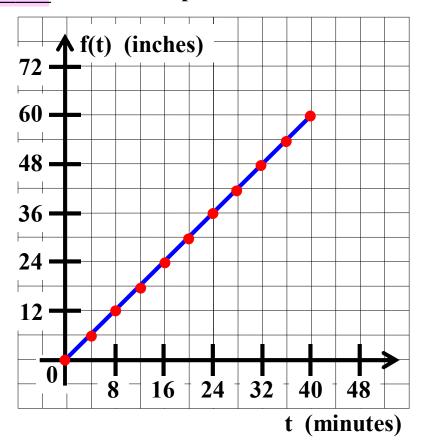


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	
0 4 8	0 6 12	
12 16 20 24 28	18 24 30 36 42	
32 36 40	42 48 54 60	

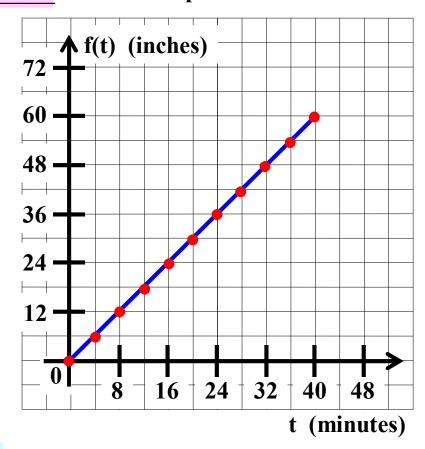


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	_
0	0	slope =
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

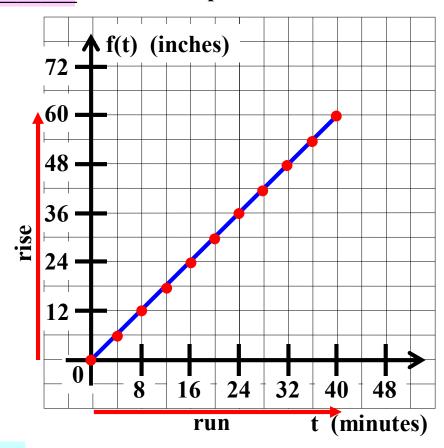


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

<u>t</u>	f(t)	- wiso
0	0	$slope = \frac{rise}{run}$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

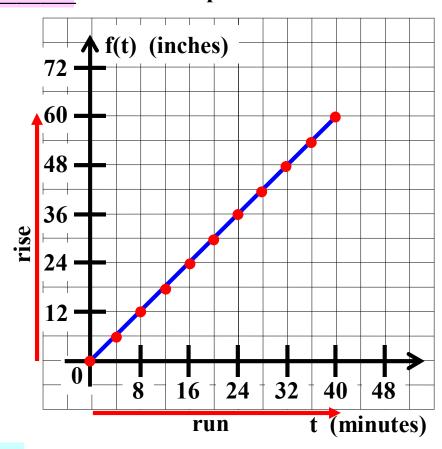


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	- wice
0	0	$slope = \frac{rise}{run}$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

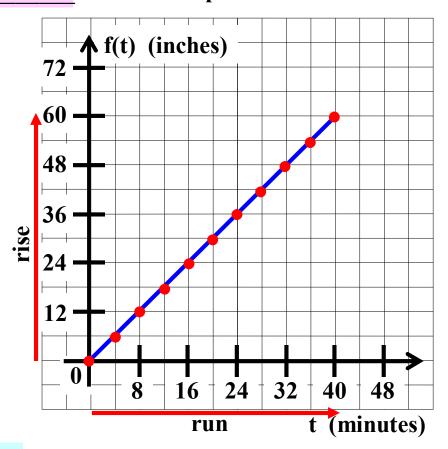


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	wigo 60
0	0	$slope = \frac{rise}{run} = \frac{60}{40}$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

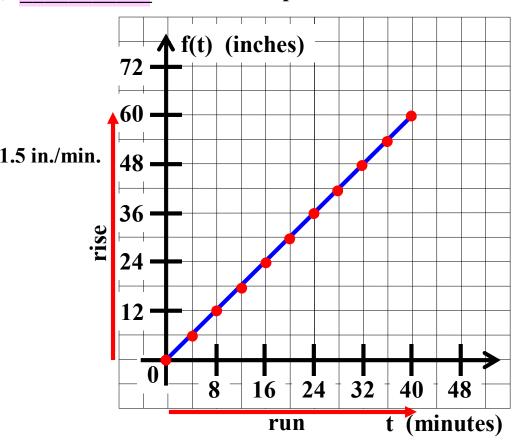


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	wigo 60
0	0	$slope = \frac{rise}{run} = \frac{60}{40} = 1.5$
4	6	
4 8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

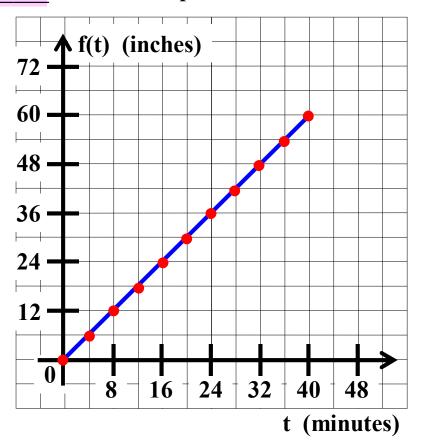

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

f(t)	····
0	$slope = \frac{rise}{run} = \frac{60}{40} = 1$
6	
12	
18	
24	
30	
36	
42	
48	
54	
	0 6 12 18 24 30 36 42

40 | 60



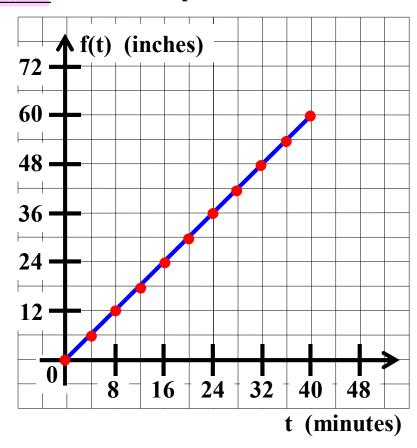
A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

_t	f(t)	wise 60
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
24 28 32	48	
36	54	
40	60	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

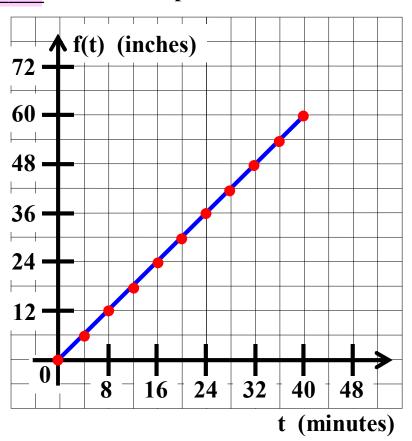

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

36

60

ic tan	K 15 Tull.	
t	f(t)	wigo 60
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min}$
4	6	'y-intercept' =
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
	t 0	0 0 4 6 8 12 12 18 16 24 20 30 24 36 28 42

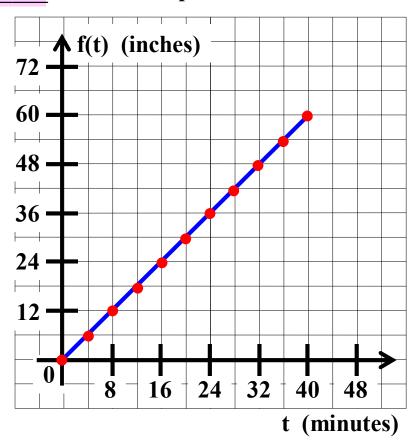

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

40 | 60

tiit tuii	IX IS I WIII	
<u>t</u>	f(t)	riso 60
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min}$
4	6	'y-intercept' = 0
8	12	•
12	18	
16	24	
20	30	
24 28	36	
28	42	
32	48	
36	54	


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

40 | 60

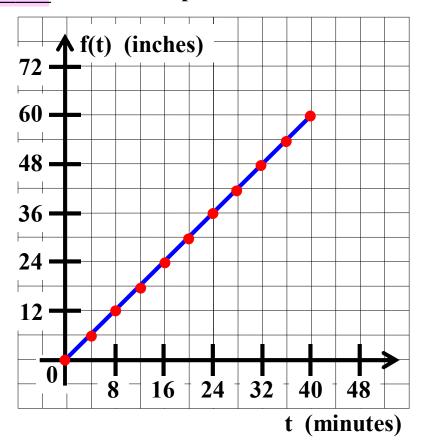
•	ic tuii	IL ID I MII	•
	t	f(t)	wigo 60
	0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
	4 8	6	'y-intercept' = 0
	8	12	v
	12	18	y = mx + b
	16	24	·
	20	30	
	20 24 28 32	36	
	28	42	
	32	48	
	36	54	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

· · · · · · · · · · · · · · · · · · ·		
t	f(t)	•
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
0 4 8 12	6 12	'y-intercept' = 0
	18	y = mx + b
16 20	24 30	$\mathbf{v} =$
24	36	J
20 24 28 32	42 48	
36 40	54 60	

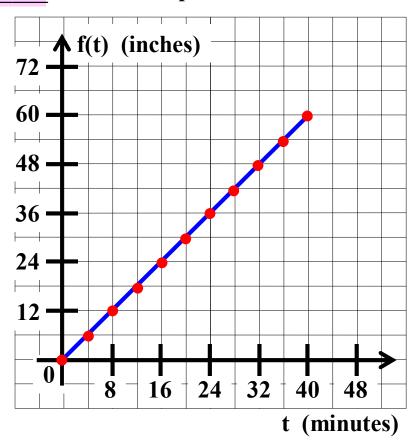


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

ine tam	K 15 Tull.	
t	f(t)	• (0
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
0 4 8 12	6 12	'y-intercept' = 0
	12 18	y = mx + b
16 20	24 30	y = 1.5x
24	36	<i>J</i> = 33 = 1
28 32	42 48	
36 40	54 60	
-		

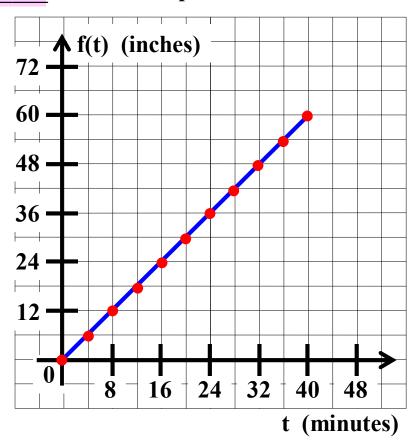

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

40 | 60

	ic tail.	ix is iuii.	
	t	f(t)	
•	0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
	0 4 8 12	6 12	'y-intercept' = 0
	8	12	
	12	18	y = mx + b
	16	24	•
	20	30	y = 1.5x + 0
	20 24 28 32 36	24 30 36 42	
	28		
	32	48 54	
	36	54	
	4.0	l (A	

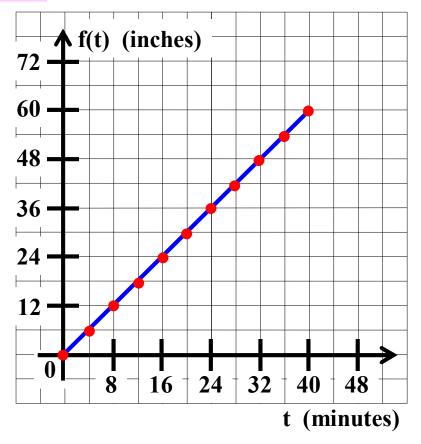

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

40 | 60

tiic taiii	IX IS I WIII	
t	f(t)	• 60
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
4	6	'y-intercept' = 0
0 4 8 12	12 18	y = mx + b
16	24	
20 24	30 36	y = 1.5x
28 32	42	
32 36	48 54	
30		



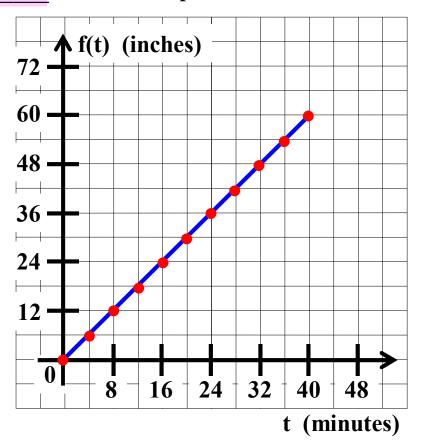
A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

LI	ic tair	K 15 IUII	
	t	f(t)	• 60
•	0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
	4 8 12	6	'y-intercept' = 0
	8	12	
	12	18	y = mx + b
	16	24	4 2
	20	30 36	y = 1.5x
	24		
	24 28 32	42	
	3 <i>L</i> 36	48 54	

$$f(t) =$$


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

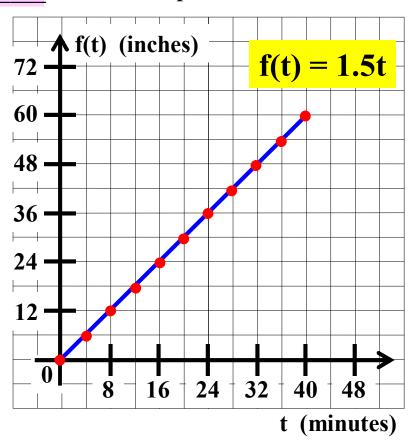
- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

40 | 60

u	ie taii	K 15 1UII.	
	t	f (t)	
•	0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
	4 8	6	'y-intercept' = 0
	8	12	, I
	12	18 24	y = mx + b
	16	24	
	16 20	30 36	y = 1.5x
	24	36	
	28	42	
	32	48	
	36	54	

$$f(t) = 1.5t$$

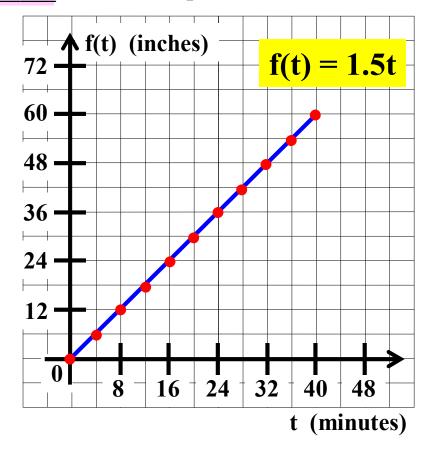

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

40 | 60

unc tam	K 15 Tull.	
t	f(t)	•
0	0	slope = $\frac{\text{rise}}{\text{run}} = \frac{60}{40} = 1.5 \text{ in./min.}$
0 4 8 12	6 12	'y-intercept' = 0
	18	y = mx + b
16 20	24 30	y = 1.5x
20 24 28 32	36	J III
28 32	42 48	
36	48 54	

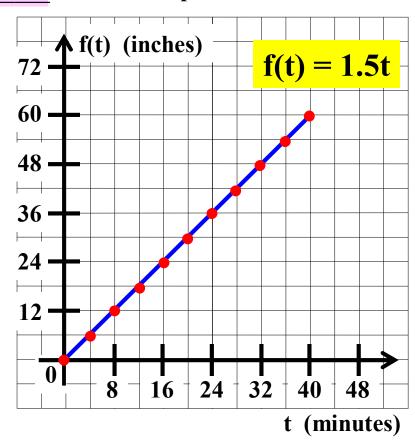

$$f(t) = 1.5t$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

0 0 4 6 8 12 12 18 16 24
20 30 24 36 28 42 32 48 36 54 40 60

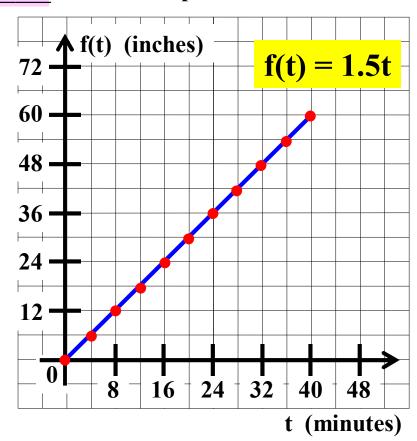


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

_t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

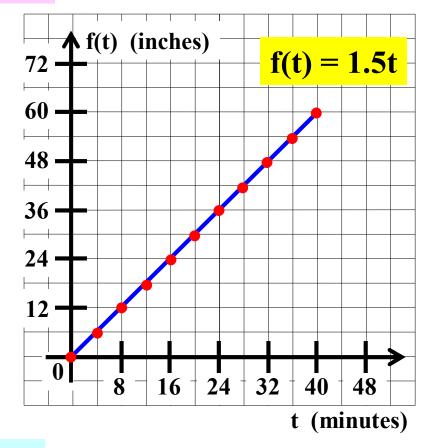

5. What is the domain of function f?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8 12	12 18
16	24
20 24	30 36
24 28	42
32	48
36 40	54 60
ľ	

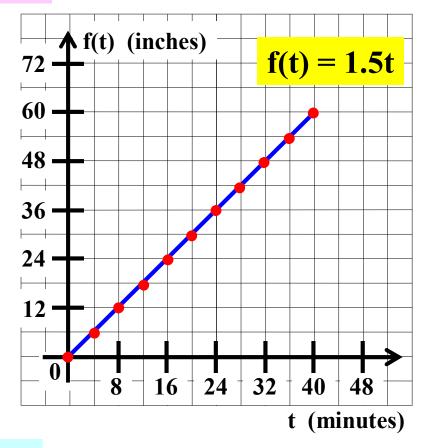

5. What is the domain of function f?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

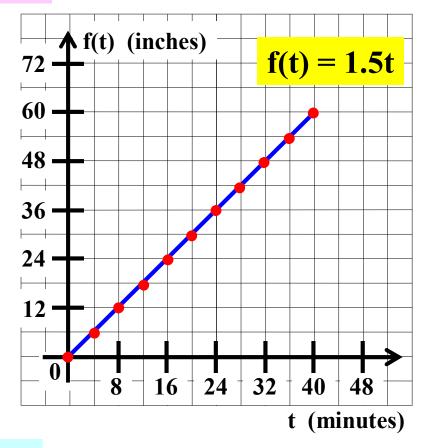

5. What is the domain of function f?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60


5. What is the domain of function f?

[0,40]

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank?
- 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

5. What is the domain of function f?

[0,40]

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. 1

24

30 36 42

48

54

20

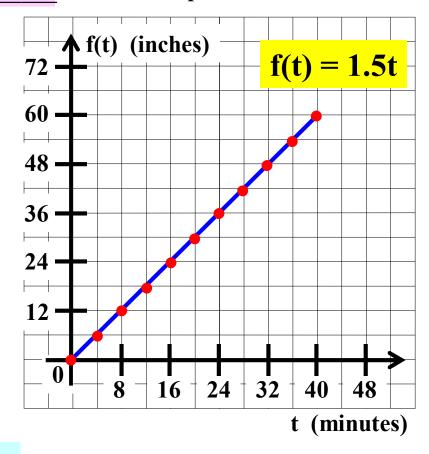
32

36

	9 4.5	domain
t	f (t)	[0,40]

	f(t)	=	1.5	t
+				>
32	2 † 4	0	48	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).


1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

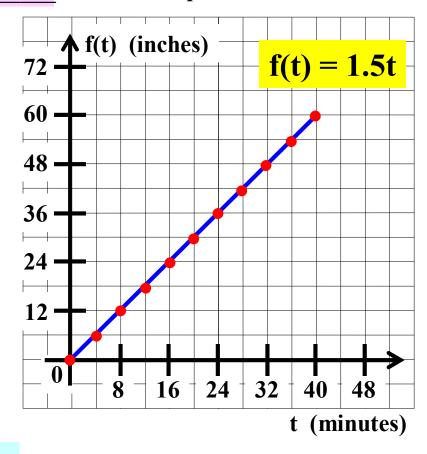
2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

ic twill is fully				
t	f(t)			
0	0			
4	6			
8	12			
12	18			
16	24			
20	30			
24	36			
28	42			
32	48			
36	54			
40	60			

domain [0,40]

6. What is the range of function f?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).


1. How long will it take to fill the tank? 40 minutes

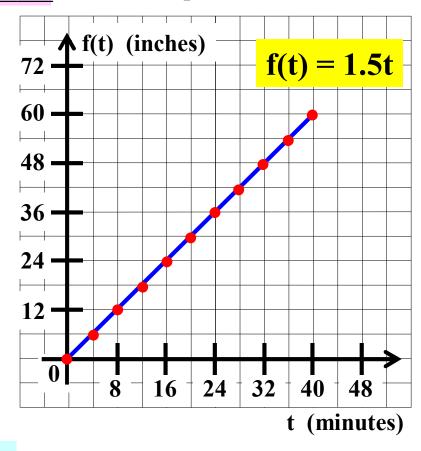
3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)	_
0	0	
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

domain [0,40]

6. What is the range of function f?


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank?
- 40 minutes
- 3. Graph function f.

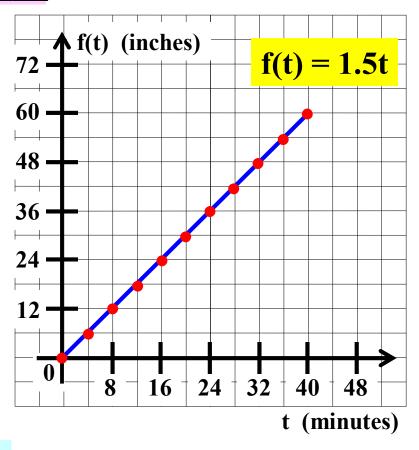
2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain [0 , 40]

6. What is the range of function f?

[0,


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank?
- 40 minutes
- 3. Graph function f.

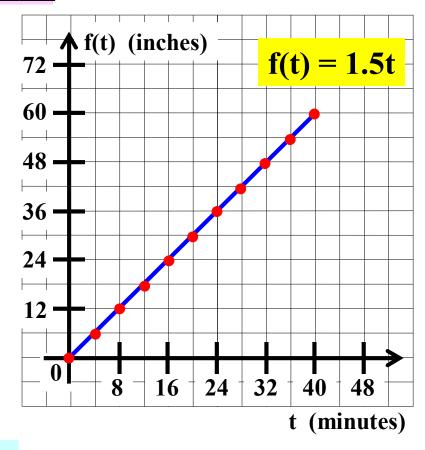
2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain [0 , 40]

6. What is the range of function f?

[0,60]


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

- 1. How long will it take to fill the tank? 40 minutes
- 3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

t	f(t)
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain [0, 40]range [0,60]

6. What is the range of function f?

0,60

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

30

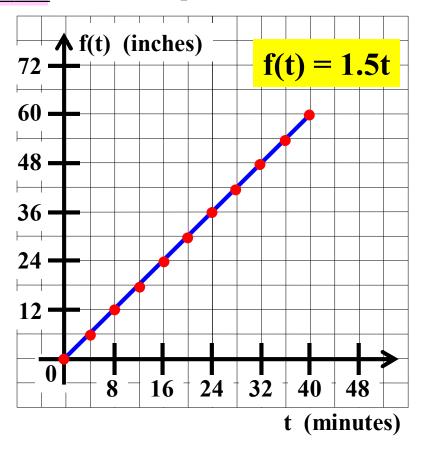
36

42

48

54

60


20

28

32

36

ic tank is fun.		domain
<u>t</u>	f(t)	[0,40]
0	0	range
0 4 8 12	$\begin{bmatrix} 0 \\ 6 \\ 12 \end{bmatrix}$	[0,60]
12	18	

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

24

30

36

42

48

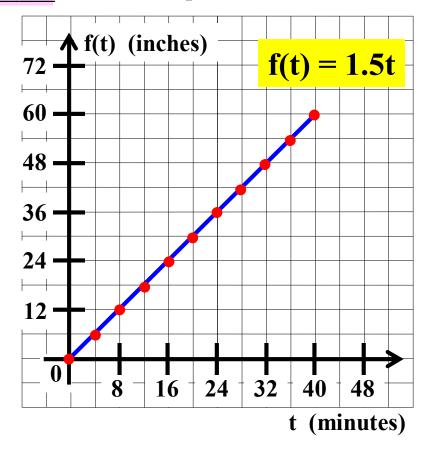
54

60

20

24

28


32

36

4	. ((4)	uomam
t	f(t)	[0,40]
•		
U	0	range
4	6	
8	12	[0,60]
12	10	

7. Evaluate f(20).

What does f(20) represent in terms of the problem?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

30

36

42

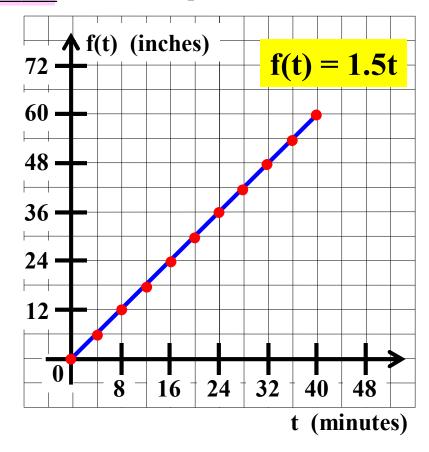
48

54

60

20

28


32

36

4	· C(4)	uomam
τ	f(t)	[0,40]
n	۱ ۵	
4	6	range
8	12	[0,60]
12	18	

7. Evaluate f(20).

What does f(20) represent in terms of the problem?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

16

20

24 **28**

32

36

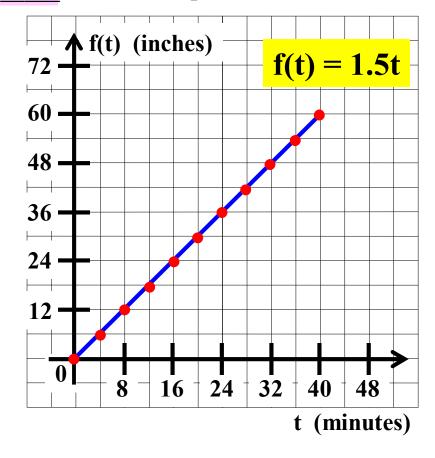
24

30

36

42

48


54

60

4 · C(4)		uomam
$\mathbf{t} \mid \mathbf{f}$	f(t)	[0,40]
Λ	١٨	
4		range
0 4 8 12	0 6 12	[0,60]
12	18	

7. Evaluate f(20).

What does f(20) represent in terms of the problem?

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

30

36

42

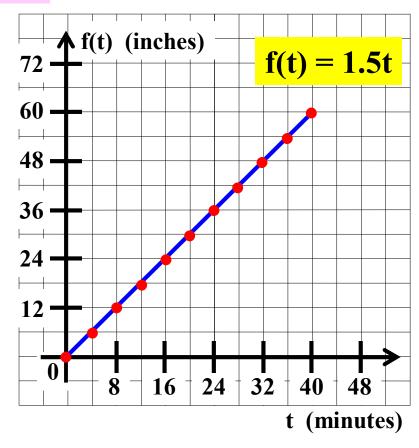
48

54

60

20

24 **28**


32

36

. 6(4)		domain
t	f(t)	[0,40]
0	0	range
4 8	6 12	[0,60]
12	18	L / J
16	24	7. Evaluate f(20).

What does f(20) represent in terms of the problem?

f(20)

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. .1

30

36

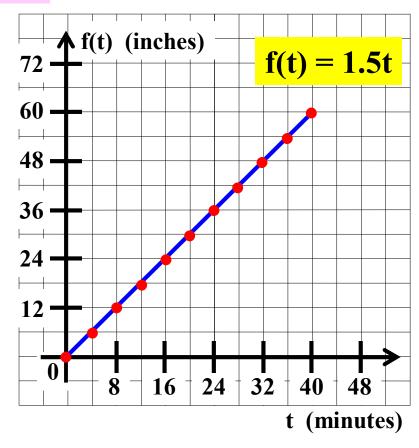
42

48

54

60

20


24 **28**

32

36

4	. (2/4)	domain
<u>t</u>	f(t)	[0,40]
0	0	range
4 8	6 12	[0,60]
12	18	
16	24	7. Evaluate f(20).

$$f(20) =$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

16

20

24 **28**

32

36

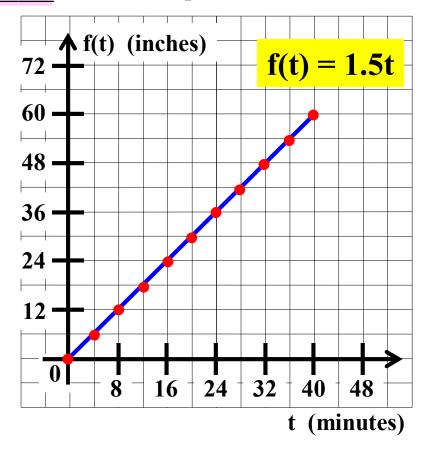
24

30

36

42

48


54

60

4	. C (4)	domain
<u>t</u>	f(t)	[0,40]
0	۱ ۵	
4	6	range
0 4 8 12	6 12	[0,60]
12	18	L / J

7. Evaluate f(20).

$$f(20) = 30$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

30

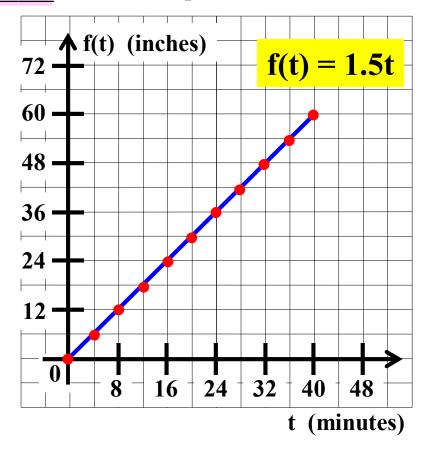
36

42

48

54

60


24 **28**

32

36

		.1.	domain	
t	f(t)	_	[0,40]	
0 4	0 6		range	
8 12	6 12		[0,60]	
12	18		•	
16	24	7. Eva	luate f(20).	

$$f(20) = 30 inches$$

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

20

28 32

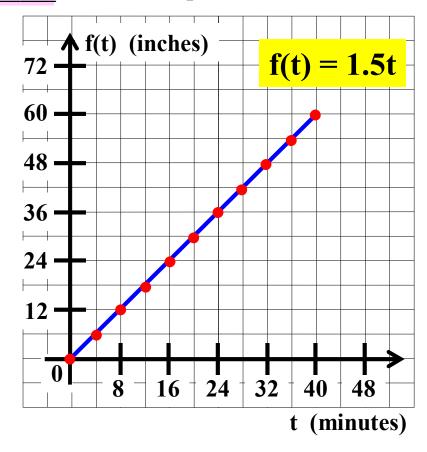
36

30

36

42

48

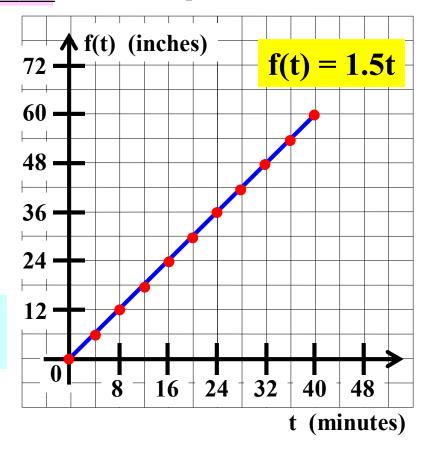

54

60

4	· · · · · · · · · · · · · ·	domain
<u>t</u>	f(t)	[0,40]
•		[0,10]
0 4	0	range
4	6	
8	12	[0,60]
12	18	

7. Evaluate f(20).

$$f(20) = 30$$
 inches

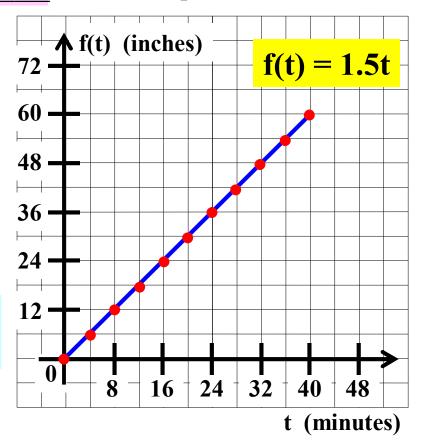

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

ne tank is fun.		domain
t	f(t)	[0,40]
0	0	range
0 4 8 12	6 12	[0,60]
12 16	18 24	7. Evaluate f(20).
20 24	30 36	What does f(20) represent
28	42	in terms of the problem?
32 36 40	48 54	C(20) 20 1
40	60	f(20) = 30 inches

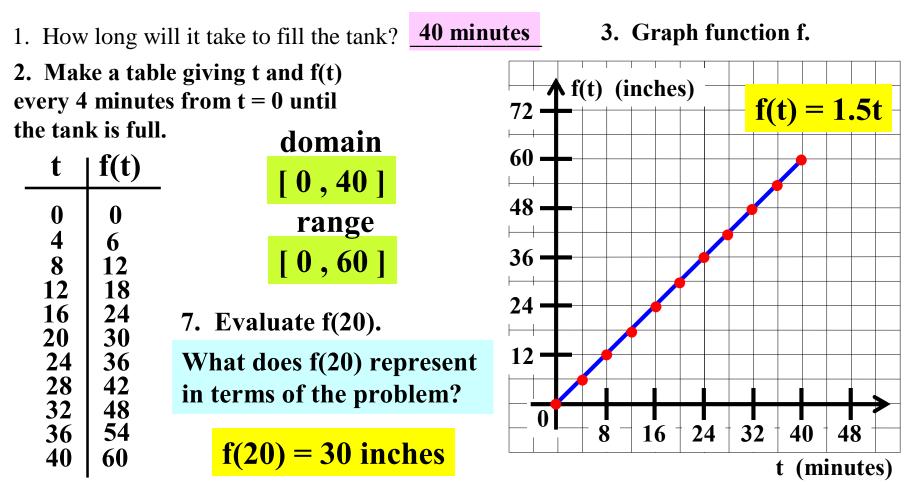

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until th

he tank is full.		domain
t	f(t)	[0,40]
$egin{pmatrix} 0 \\ 4 \end{bmatrix}$	0 6	range
4 8 12	12 18	[0,60]
16	24	7. Evaluate f(20).
20 24	30 36	What does f(20) represent
28 32	42 48	in terms of the problem?
36 40	54 60	f(20) = 30 inches


f(20) represents

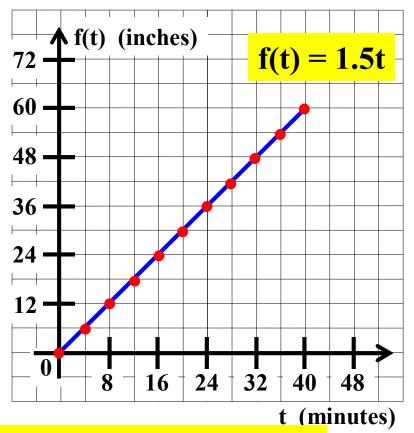
A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f. 2. Make a table giving t and f(t) **★** f(t) (inches) every 4 minutes from t = 0 until f(t) = 1.5t**72** the tank is full. domain 60 | **f(t)** [0, 40]48 0 range [0,60]**36** 12 18 24 16 24 7. Evaluate f(20). **20 30 12 24 36** What does f(20) represent 28 32 **42** in terms of the problem? 48 **36** 54 16 24 **32** 48 40 f(20) = 30 inches**40 60** t (minutes)

f(20) represents the depth of the water

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

f(20) represents the depth of the water after 20 minutes.


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. 1

t	f(t)	[0,40]
0 4 8 12	0 6 12	range [0 , 60]
12 16 20	18 24 30	7. Evaluate f(20).
24 28 32 36	36 42 48 54	What does f(20) represent in terms of the problem?

f(20) represents the depth of the water after 20 minutes.

f(20) = 30 inches

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

30

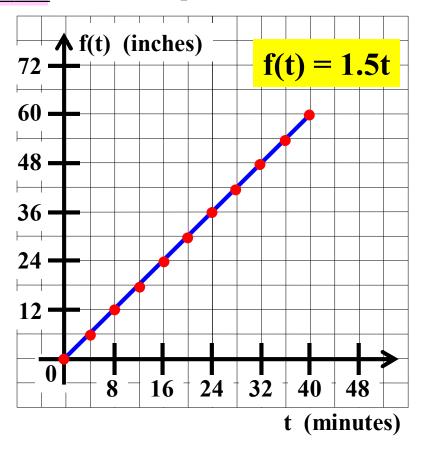
36

42

48

54

60

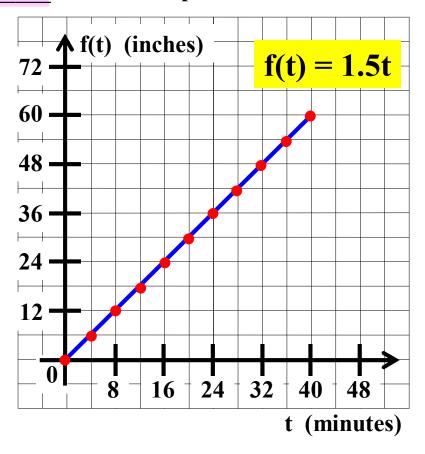

20

28

32

36

c tank is fun.		domain
<u>t</u>	f(t)	[0,40]
0	0	range
0 4 8 12	$\begin{bmatrix} 0 \\ 6 \\ 12 \end{bmatrix}$	[0,60]
12	18	


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

f(t)	[0,40]
0	range
12	[0,60]
	8. If $f(t) = 20$, then find
30	the value of t.
42	What does this value of t
54	represent in terms of the problem?
	0 6 12 18 24 30 36 42 48

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full.

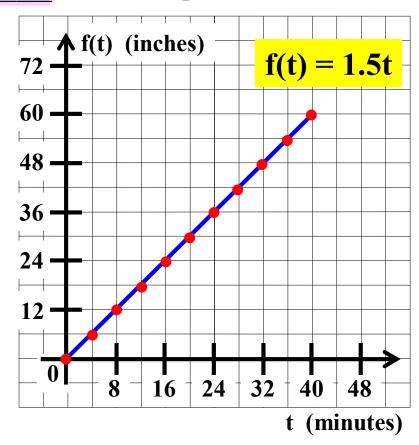
30

36

42

48

54

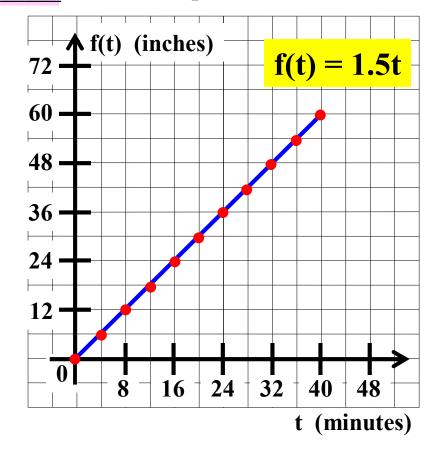

28

32

36

4	. C (4)	aomain	
<u>t</u>	$\int f(t)$	[0,40]	
0	0	range	
4 8 12	6 12	[0,60]	
12 16	18 24	8. If $f(t) = 20$, then	

the value of t. What does this value of t represent in terms of the problem?

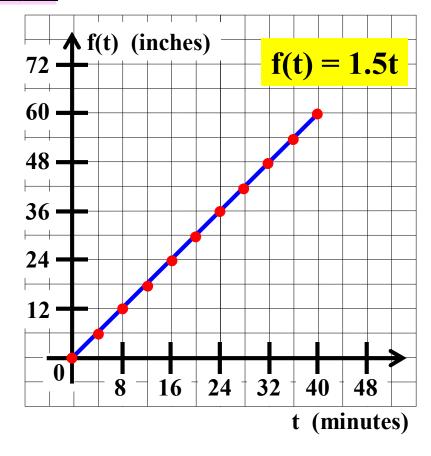

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

t lan	k is ruii. f(t)	domain
0 4 8 12 16 20 24 28 32 36 40	0 6 12 18 24 30 36 42 48 54 60	[0,40] range [0,60] 8. If f(t) = 20, then find the value of t. What does this value of t represent in terms of the problem? f(t) = 20
	•	

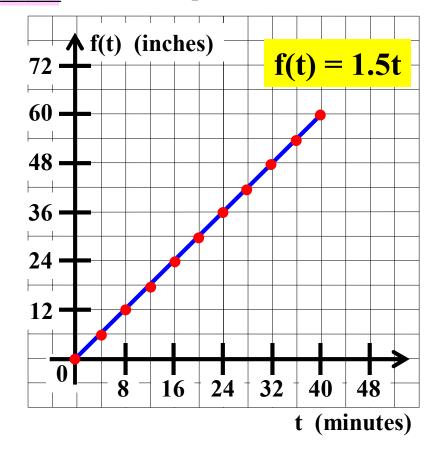

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

ie tank is fun.		domain
t	f(t)	[0,40]
0 4 8	0 6	range
8 12 16 20	12 18 24 30	[0 , 60] 8. If f(t) = 20, then find the value of t.
24 28 32 36	36 42 48 54	What does this value of t represent in terms of the
40	60	problem? $f(t) = 20$

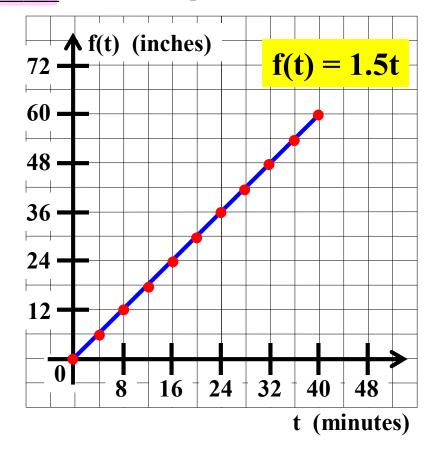

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

t t	f(t)	domain [0,40]
0 4 8 12 16 20 24 28 32 36 40	0 6 12 18 24 30 36 42 48 54 60	range [0,60] 8. If f(t) = 20, then find the value of t. What does this value of t represent in terms of the problem? f(t) = 20
	-	


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full

$t \mid f(t)$		domain		
		[0,40]		
0	0	range		
4 8	6 12	[0,60]		
12 16	18 24	8. If $f(t) = 20$, then find		
20 24	30 36	the value of t.		
28	42	What does this value of t		
32	48 54	represent in terms of the		
36 40	60	problem?		
-0	f f	$t(t) = 20 \implies t = 0$		

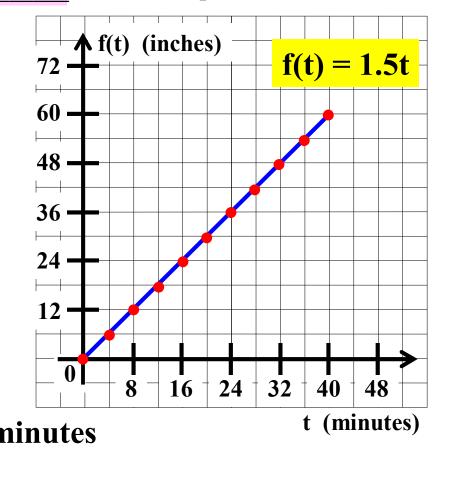

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

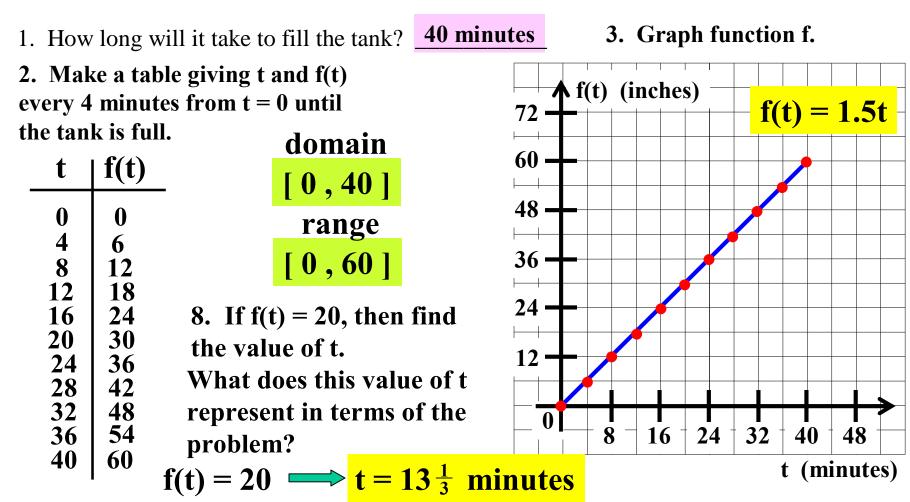
3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

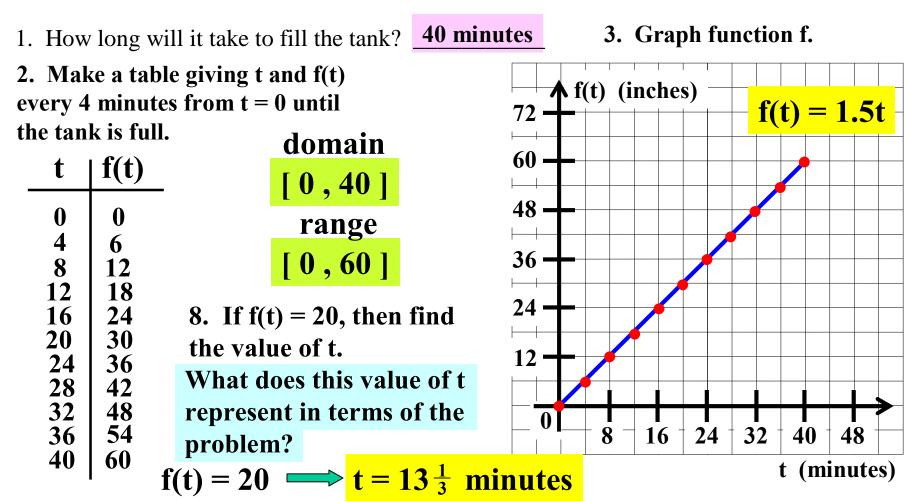
		uomam			
t	f(t)	[0,40]			
0 4 8	0 6 12 18 24	range [0 , 60]			
12 16		8. If $f(t) = 20$, then find			
20 24 28	30 36 42	the value of t. What does this value of t represent in terms of the problem?			
32 36 40	48 54 60				
40	60	$f(t) = 20 \implies t = 13\frac{1}{3}$			

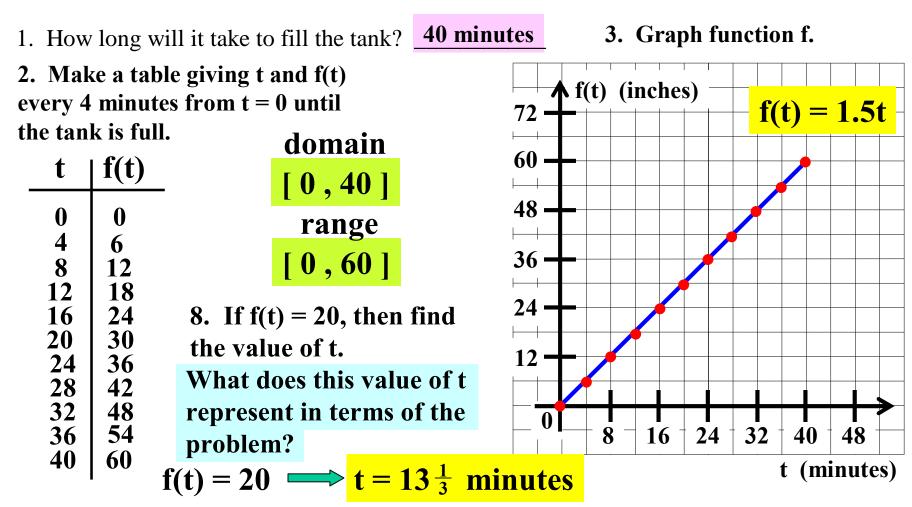

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

1. How long will it take to fill the tank? 40 minutes

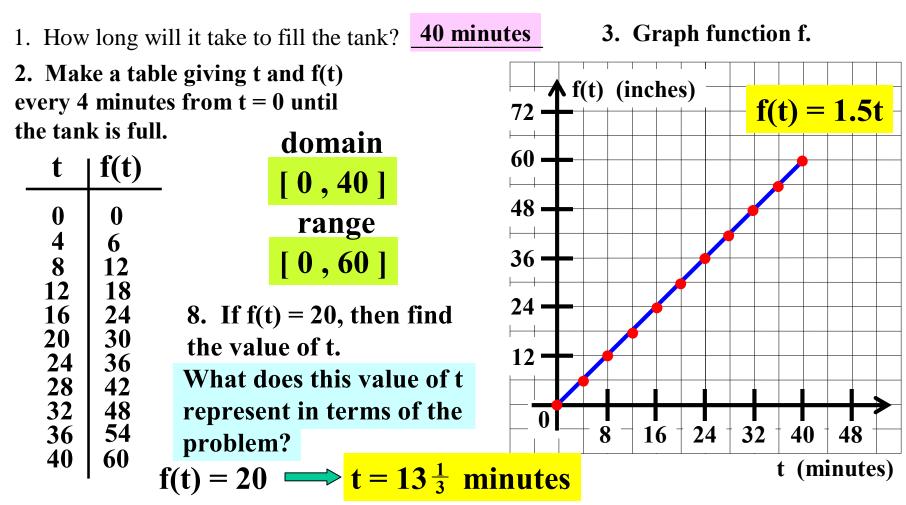

3. Graph function f.

2. Make a table giving t and f(t) every 4 minutes from t = 0 until the tank is full. domain

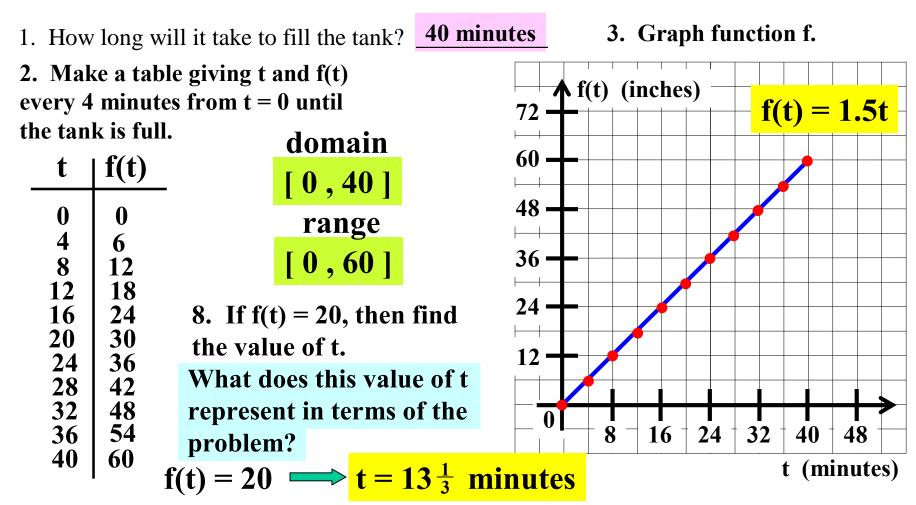

4 .	0(1)	aomam	60 🛨
<u>t</u>	f(t)	[0,40]	
0	0	range	48 —
4 8 12	6 12	[0,60]	36
12 16	18 24	8. If $f(t) = 20$, then find	24
20	30	the value of t.	12
24 28	36 42	What does this value of t	
32	48 54	represent in terms of the	
36 40	60	problem?	• 4
	I	$f(t) = 20 \implies t = 13\frac{1}{3} \text{ n}$	ninutes


A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

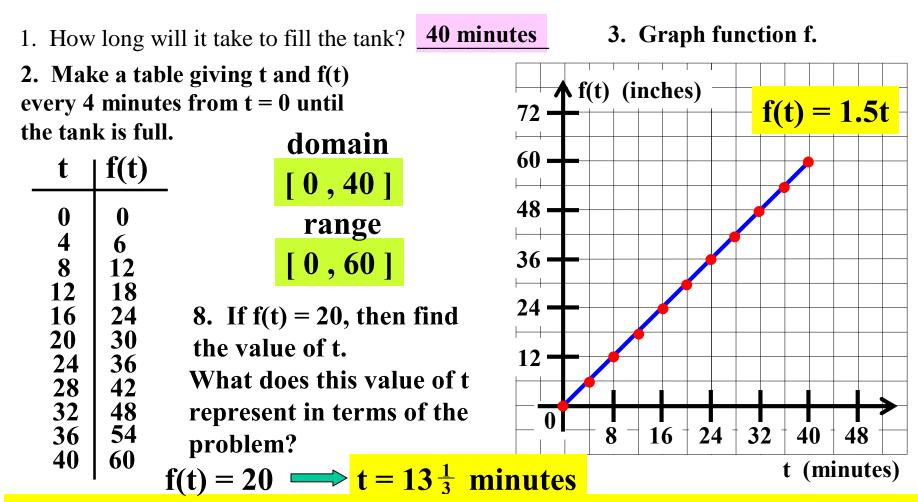
A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).



A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).


This represents

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).


This represents the time

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

This represents the time it took for the water to be 20 inches deep.

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in **minutes**). Let f(t) represent the **depth of the water** in the tank (in **inches**).

This represents the time it took for the water to be 20 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

$$V = LWH$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

$$V = LWH$$

$$V =$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

$$V = LWH$$

$$V = (6 \text{ ft.})($$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

$$V = LWH$$

$$V = (6 \text{ ft.})(4 \text{ ft.})($$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

$$V = LWH$$

 $V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

$$V = LWH$$
 $V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$
 $V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

$$V = LWH$$
 $V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$
 $V = 120$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

$$V = LWH$$

$$V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$$

$$V = 120$$
 cu. ft.

Time = 120 cu. ft. \div 8 cu. ft. per min.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

$$V = LWH$$

$$V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$$

$$V = 120$$
 cu. ft.

Time = 120 cu. ft. \div 8 cu. ft. per min.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? _____

$$V = LWH$$

$$V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$$

$$V = 120$$
 cu. ft.

Time = 120 cu. ft. \div 8 cu. ft. per min.

Time = 15 minutes

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

$$V = LWH$$

$$V = (6 \text{ ft.})(4 \text{ ft.})(5 \text{ ft.})$$

$$V = 120$$
 cu. ft.

Time = 120 cu. ft. \div 8 cu. ft. per min.

Time = 15 minutes

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

t	F(t)

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

t	F(t)
0	
3	
6	
9	
12	
15	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

t	F(t)	When $t = 0$,
0		, , ,
3		
6		
9		
12		
15		

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

<u>t</u>	F(t)	When $t = 0$,
0		· · · · · · · · · · · · · · · · · · ·
3		
6		
9		
12		
15		

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

<u>t</u>	F(t)	When t =	= 0. the 1	tank is	full.
0			,		
3					
6					
9					
12					
15					

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	
3	
6	
9	
12	
15	
_	

When t = 0, the tank is full. The water is 60 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

 t	F(t)
0	60
3	
6	
9	
12	
15	

When t = 0, the tank is full. The water is 60 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

<u>t</u>	F(t)
0	60
3	
6	
9	
12	
15	

When t = 0, the tank is full. The water is 60 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

15

t	F(t)	When $t = 0$, the tank is full.
0 3	60	The water is 60 inches deep
3 6		
9		When $t = 15$,
12		

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

<u>t</u>	F(t)	When t =
0 3	60	The wate
3		THE Wate
6		When t =
9		VV II CII C
12		
 15		

When t = 0, the tank is full. The water is 60 inches deep. When t = 15,

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

15 |

t	F(t)	When $t = 0$, the tank is full.
0 3	60	The water is 60 inches deep.
6 9		When $t = 15$, the tank is empty
12		

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

$t \mid F(t)$	When $t = 0$, the tank is full.
$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	The water is 60 inches deep.
6 9	When $t = 15$, the tank is empty.
12 15	The water is 0 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

<u>t</u>	$\mathbf{F}(t)$	
0	60	
3		
6		
9		
12		
1 5	0	

When t = 0, the tank is full. The water is 60 inches deep.

When t = 15, the tank is empty. The water is 0 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

t	F(t)	When $t = 0$, the tank is full.
0 3	60	The water is 60 inches deep.
		The water is of menes deep.
6		When $t = 15$, the tank is empty.
9 12		The water is 0 inches deep.
15	0	The water is a menes acept

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

t	F(t)
0	60
3	
6	
9	
12	
15	0

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

t	F(t)
0	60
3	
6	
9	
12	
15	0

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	
6	
9	
12	
15	0

The water depth decreases 60 inches

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

	t	F(t))
	- 0	60	
	3		
	6		
	9		
	12		
L	15	0	4

The water depth decreases 60 inches

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	_
- 0	60	
3		
6		
9		
12		
15	0	4

The water depth decreases 60 inches in 15 minutes.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	<u> </u>
- 0	60	_
3		
6		
9		
12		
15	0	←

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

	t	F(t))
	- 0	60	_
	3		
	6		
	9		
	12		
L	15	0	4

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

$\mathbf{f} \mid \mathbf{F}(\mathbf{t})$	The water depth decrease
0 60	60 inches in 15 minutes.
3 6	It decreases at 4 inches
9	per minute.
12 15 0	It decreases 12 inches
1	every 3 minutes.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	$ \mathbf{F}(\mathbf{t}) $	The v
0		60 in
0 3 6 9 12 15		It de
9		per n
12		•
15	0	It de

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	
0	60	
3	48 36	
→ 6	36	
9		
12		
15	0	

The water depth decreases 60 inches in 15 minutes. It decreases at 4 inches

It decreases 12 inches every 3 minutes.

per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
→ 9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
→ 9	24
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
→ 12	
15	0
6 9 → 12	36 24

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

F(t)
60
48
36
24
12
0

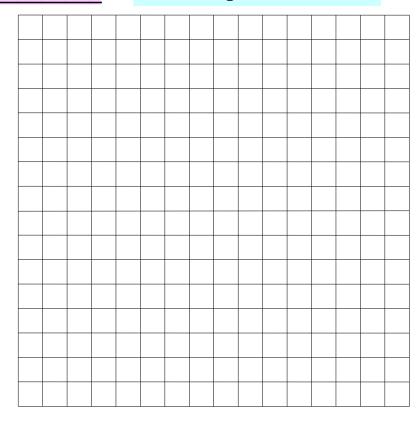
The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

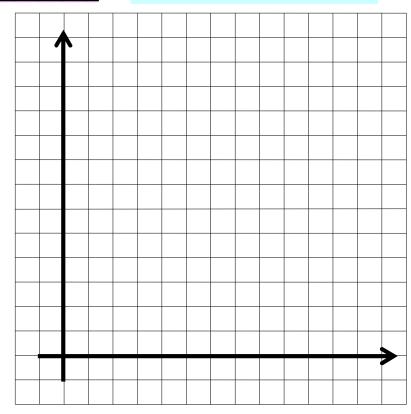

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

11. Graph function F.

<u>t</u>	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

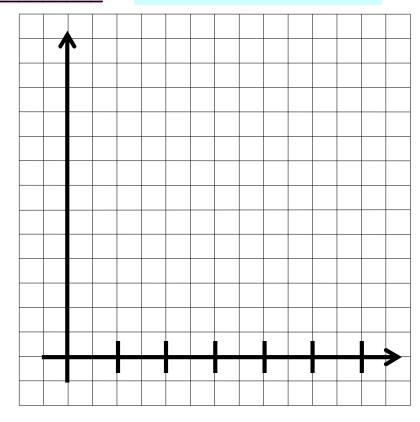


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

11. Graph function F.

t	$\mathbf{F}(\mathbf{t})$
0	60
3	48
6	36
9	24
12	12
15	0

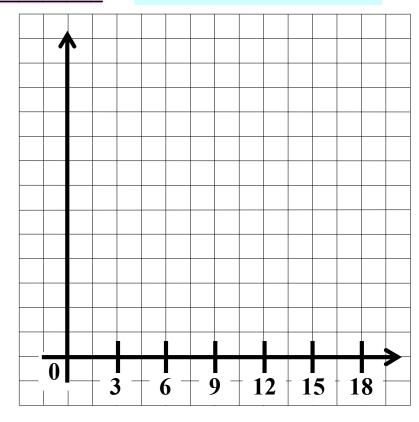


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

11. Graph function F.

<u>t</u>	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

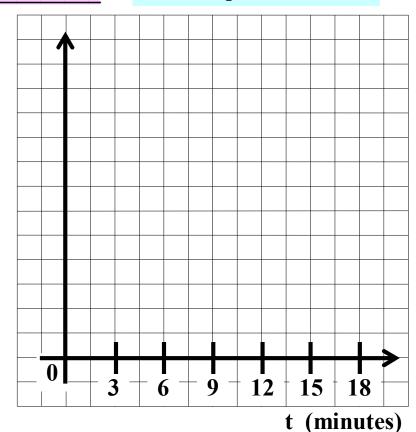


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

11. Graph function F.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

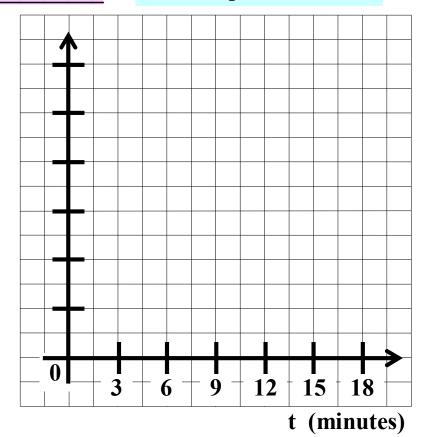


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

11. Graph function F.

t	$\mathbf{F}(\mathbf{t})$
0	60
3	48
6	36
9	24
12	12
15	0

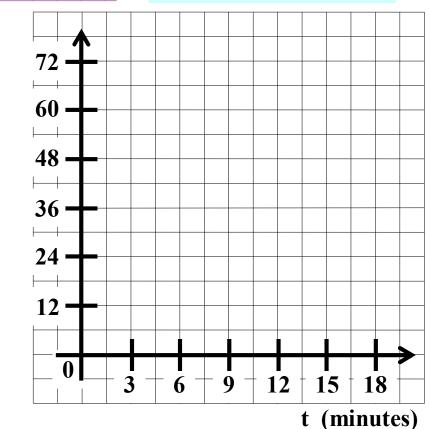

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

,	_
nutes	S
	inute

11. Graph function F.

<u>t</u>	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

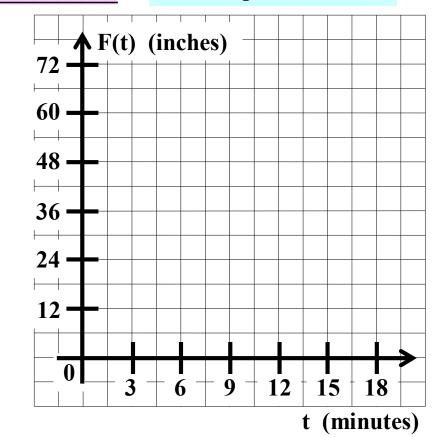

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.

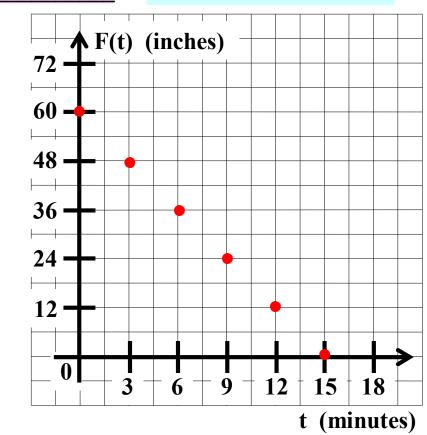


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

11. Graph function F.

<u>t</u>	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

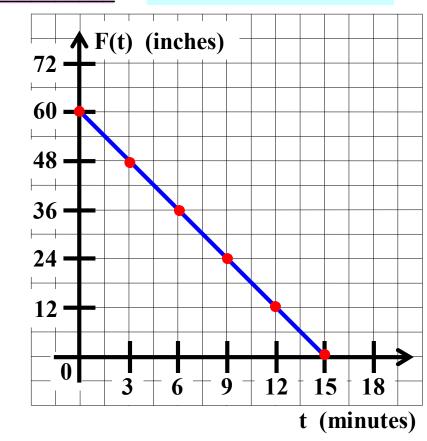

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

1 =	• .	4
15	min	utes

11. Graph function F.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

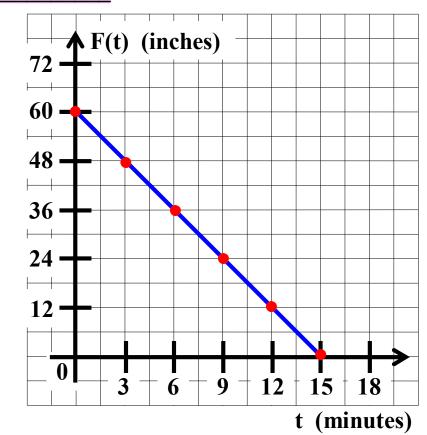

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15	min	utes

11. Graph function F.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

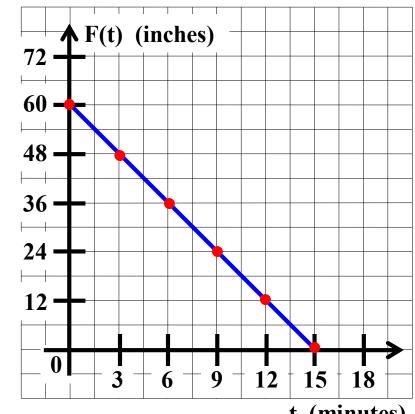

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

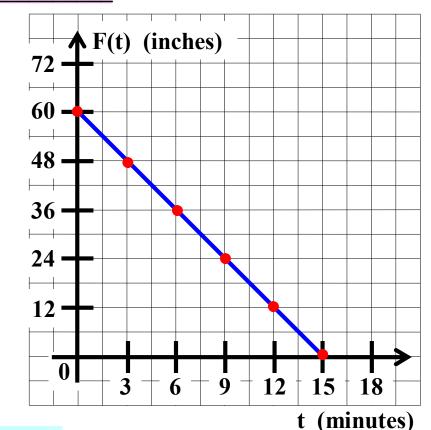
- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.

t (minutes)

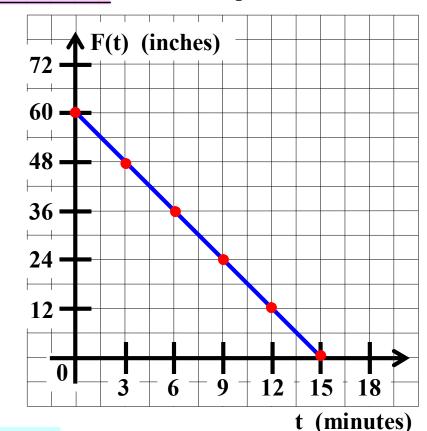

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope =
0	60	stope
3	48	
6	36	
9	24	
12	12	
15	0	

15 minutes

11. Graph function F.

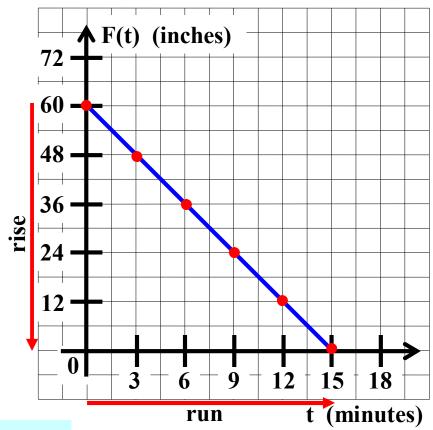

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}}$
0	60	run
3	48	
6	36	
9	24	
12	12	
15	0	

15 minutes

11. Graph function F.

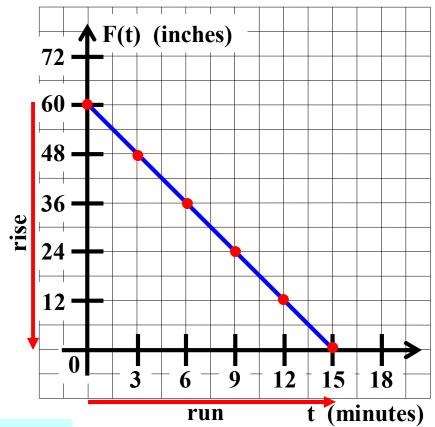

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{rup}}$
0	60	run
3	48	
6	36	
9	24	
12	12	
15	0	

15 minutes

11. Graph function F.

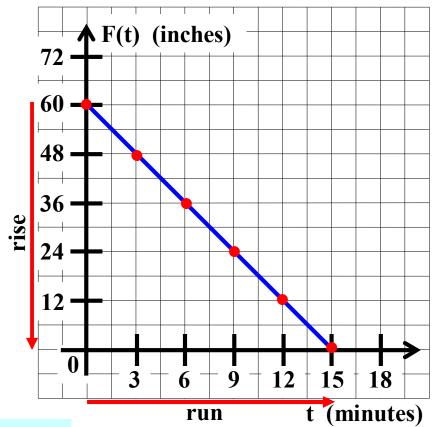

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15}$
0	60	slope = $\frac{15}{run} = \frac{15}{15}$
3	48	
6	36	
9	24	
12	12	
15	0	

15 minutes

11. Graph function F.


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

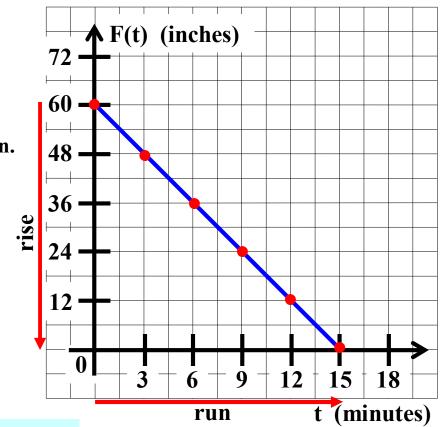
- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4$
0	60	run 15
3	48	
6	36	
9	24	
12	12	
15	0	

15 minutes

11. Graph function F.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

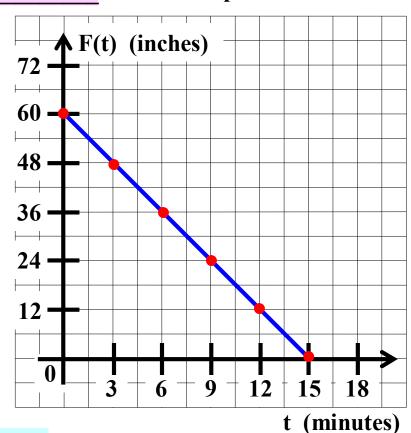
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	$\mathbf{F}(t)$	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min}$
0	60 48 36 24 12	run 15
3	48	
6	36	
9	24	
12	12	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

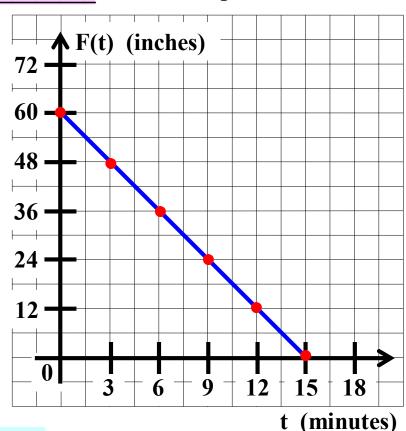
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60	run 15
3	48	
6	36	
9	24	
12	12	
15	60 48 36 24 12 0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

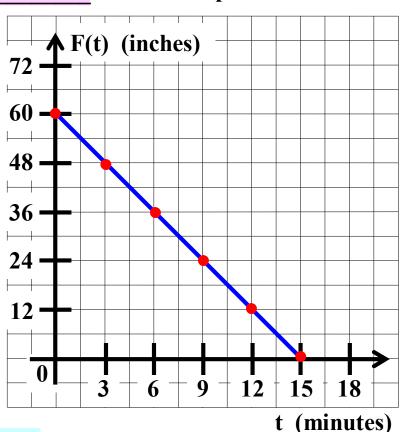
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

<u>t</u>	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60	'y-intercept' =
3 6 9 12	48	y-intercept –
6	48 36 24	
9	24	
12	12	
15	0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

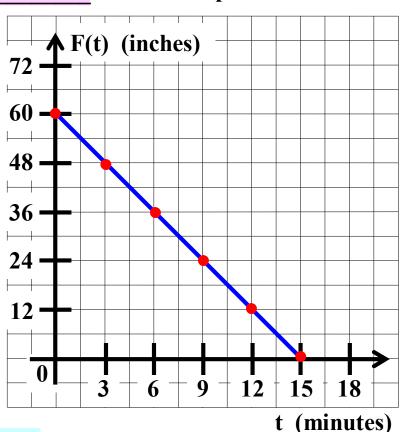
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min}$
0	60 48 36 24 12	'y-intercept' = 60
3	48	y-intercept 00
6	36	
9	24	
12	12	
15	0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

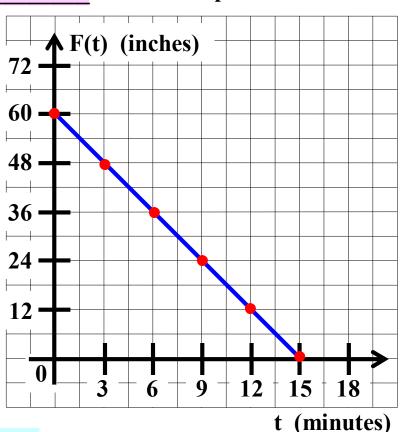
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60 48 36 24 12 0	'y-intercept' = 60
3	48	y = mx + b
6	36	y ma b
9	24	
12	12	
15	0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

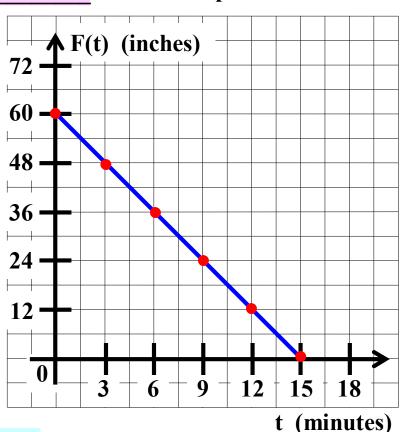
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60	'y-intercept' = 60
3 6	60 48 36 24 12	y = mx + b
9	24	$\mathbf{y} =$
12	12	
15	0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

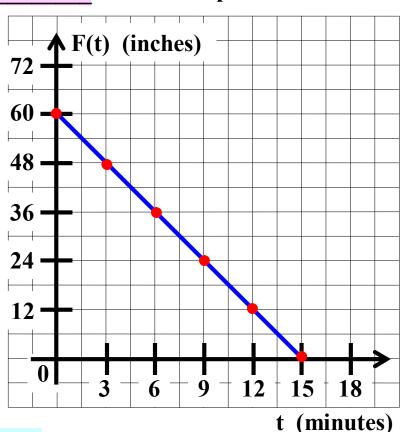
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t F(t) sl	lope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$ 'y-intercept' = 60 y = mx + b $y = -4x$
---------------	--

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

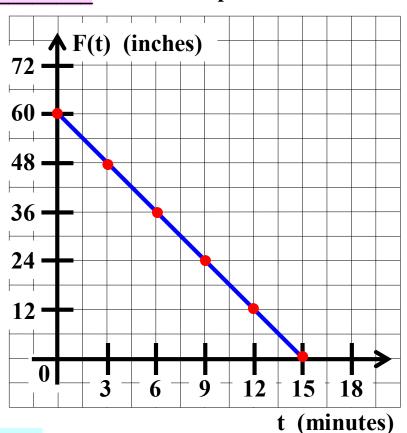

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60 48 36 24 12	'y-intercept' = 60
3	48	y = mx + b
6	36	y = -4x + 60
9	24	y — -4x + 00
12	12	
15	0	



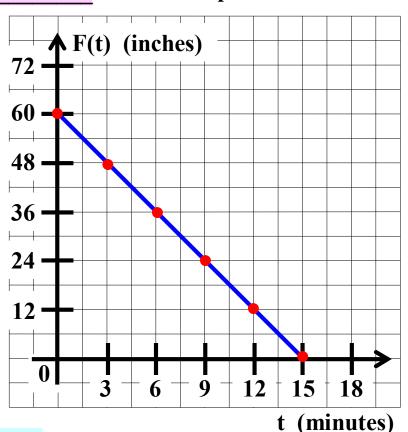
A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 15 minutes
- 11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60 48 36 24 12	'y-intercept' = 60
6	36	y = mx + b $y = -4x + 60$
9 12	24 12	y HA I OU
15	0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

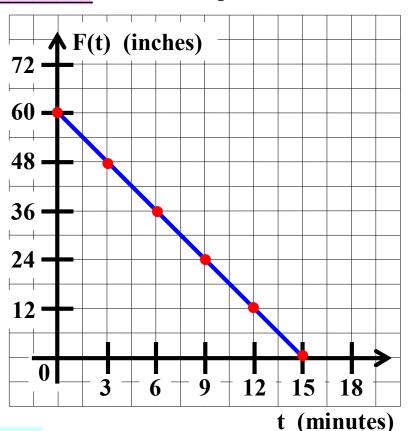
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min}$
0	60	'y-intercept' = 60
3	60 48 36 24 12 0	y = mx + b
6	36	y = 11x + 6 $y = -4x + 60$
9	24	y = -4x + 60
12	12	
15	0	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

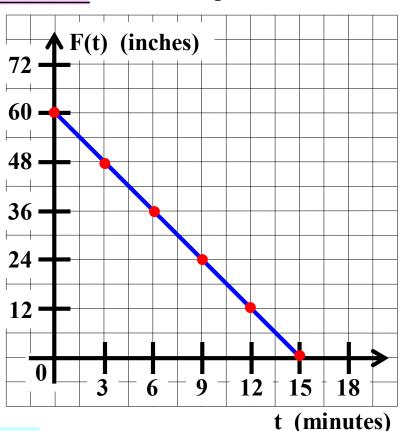
11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min}$
0	60	
3	60 48 36 24 12 0	'y-intercept' = 60
6	36	y = mx + b
9	24	y = -4x + 60
12	12	
15	0	

12. Write an equation giving F(t) in terms of t. F(t) = -4t

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

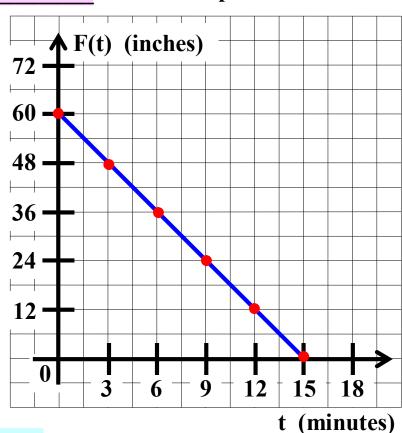
11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min}$
0	60	'y-intercept' = 60
3	60 48 36 24 12 0	y = mx + b
6	36	
9	24	y = -4x + 60
12	12	
15	0	

12. Write an equation giving F(t) in terms of t. F(t) = -4t +

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

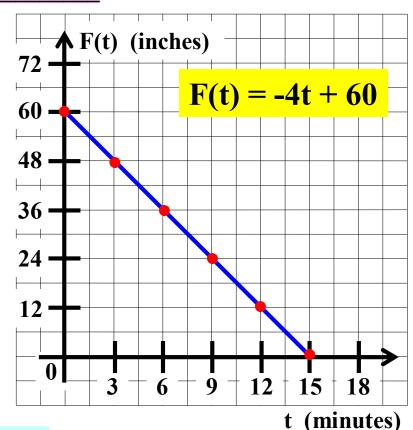

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

<u>t</u>	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min.}$
0	60 48 36 24 12	'y-intercept' = 60
3 6	48 36	y = mx + b
9	24	y = -4x + 60
12	12	
15	0	


12. Write an equation giving F(t) in terms of t. F(t) = -4t + 60

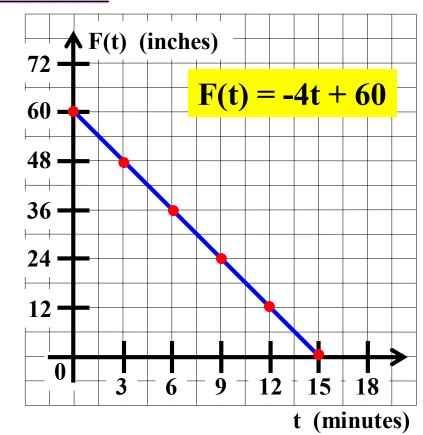
A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 15 minutes
- 11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)	slope = $\frac{\text{rise}}{\text{run}} = \frac{-60}{15} = -4 \text{ in./min}$
0	60 48 36 24 12 0	'y-intercept' = 60
3	48	y = mx + b
6	36	y = -4x + 60
9 12	12	
15	$\begin{bmatrix} 12 \\ 0 \end{bmatrix}$	

12. Write an equation giving F(t) in terms of t. F(t) = -4t + 60

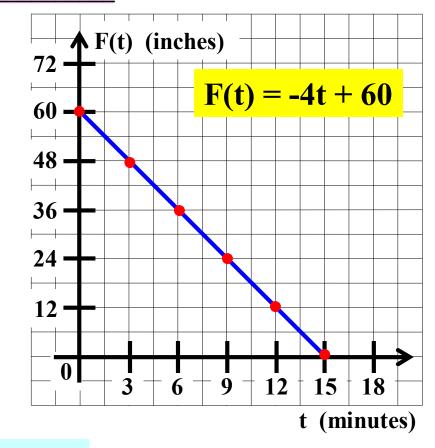

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

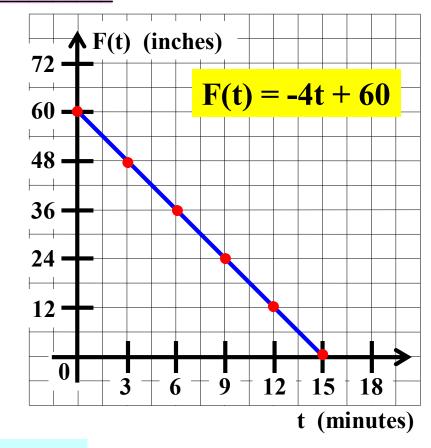
- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.

13. What is the domain of function F?


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

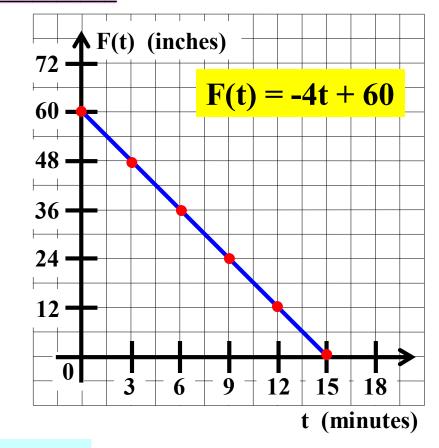
- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.

13. What is the domain of function F?


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

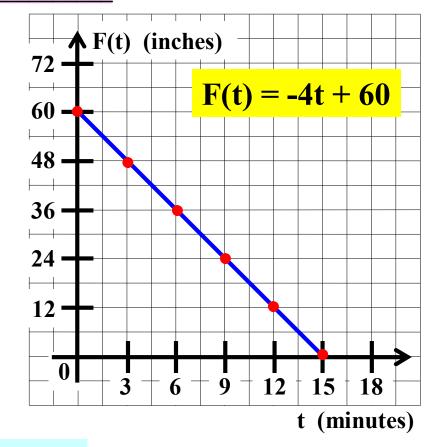
_t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.

13. What is the domain of function F?

[0,


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

- 9. How long will it take to empty the tank?
- 10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

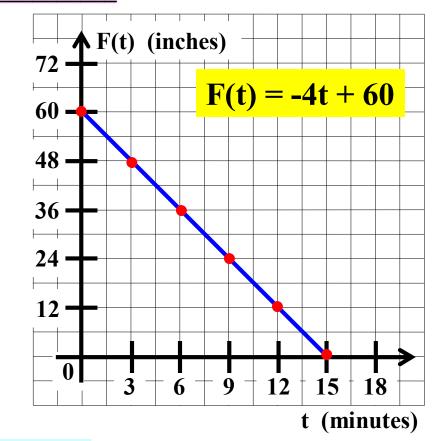
t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

15 minutes

11. Graph function F.

13. What is the domain of function F? [0, 15]

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

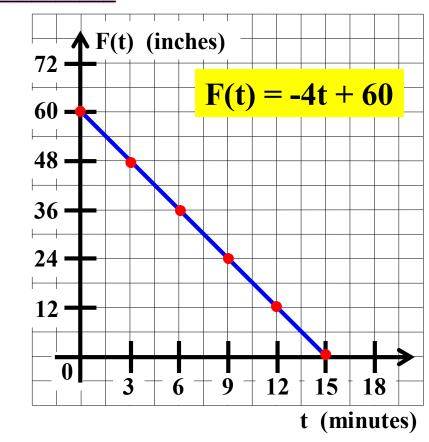
t	F(t)	
0	60	
3	48	
6	36	
9	24	
12	12	
15	0	

13. What is the domain of function F? [0, 15]

[0, 15]

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

domain
[0 , 15]

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank? 15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

t	F(t)
0	60
3	48
6	36
9	24
12	12
4 =	lacksquare

15

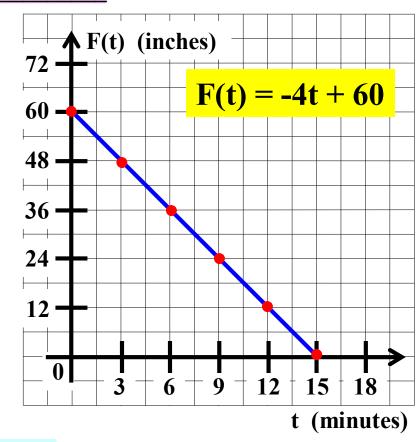
[0,15]

72	F(t	<i>)</i> (1)							_
60 -				F (1	t) =	= _ ,	4t -	<mark>⊦ 60</mark>	1
48 -									
36 -	_								
24 –	_								
12 -									
		3 +	6 -	9	<u> </u>	2	15	18	

14. What is the range of function F?

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

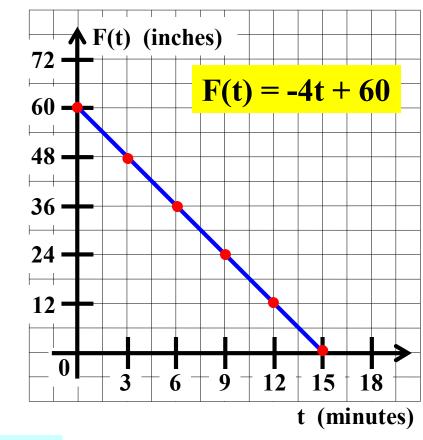
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.domain

_t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

[0,15]

14. What is the range of function F?

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

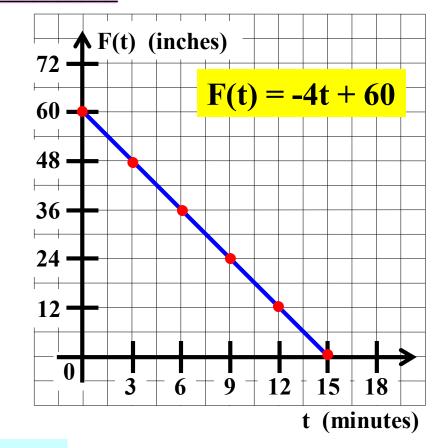
			uomam		
t	F(t)	_	[0,15]		
Λ	(0				

14. What is the range of function F?

[0,

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.domain

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

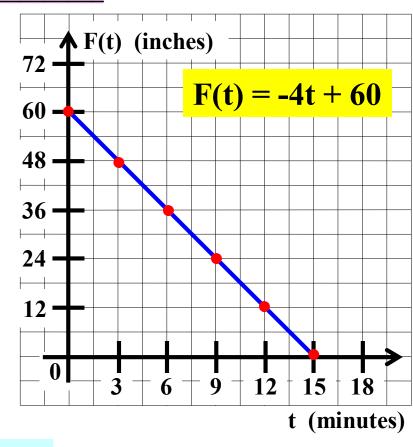
[0,15]

14. What is the range of function F?

[0,60]

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

t	F(t)
0	60
3	48
6	36
9	24
12	12
15	0

[0,15]
range
[0,60]

14. What is the range of function F?

[0,60]

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

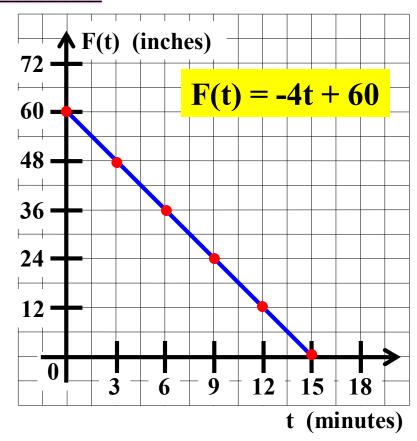
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.domain

36

24


12

0

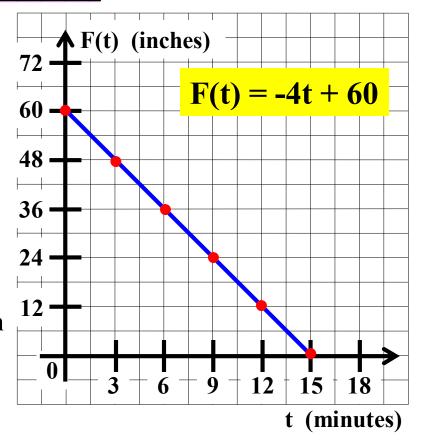
9

15

t | F(t) [0,15] 0 60 range 3 48 [0,60]

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

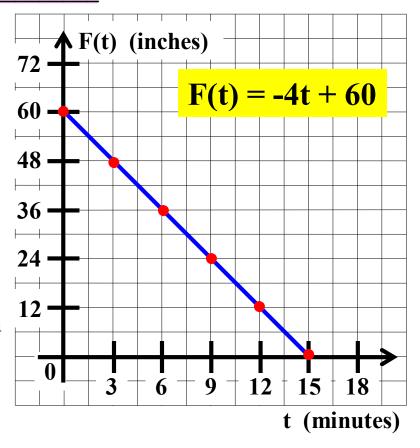
15

			domain	
t	F(t)		[0,15]	
0	60		range	
3 6	60 48 36 24		[0,60]	
6	36	15 Evolu	o4o E(0)	
9	24	15. Evalu	` ,	. •
9 12	12		s F(9) repre he problem?	

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

15

0

domain [0, 15] $\mathbf{F}(\mathbf{t})$ range **60** 0 [0,60]3 48 6 **36** 15. Evaluate F(9). 9 **24** What does F(9) represent in **12** 12 terms of the problem?

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

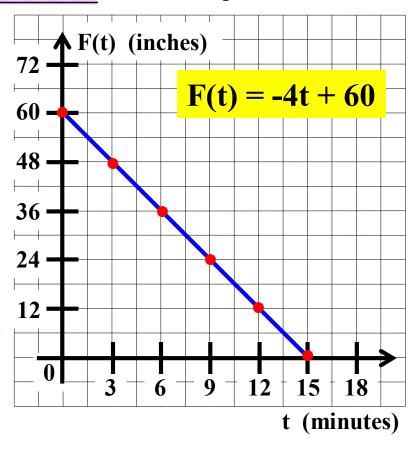
36

24

12

9

15


domain

t	$\mathbf{F}(t)$	[0,15]
0	60	range
3	48	[0,60]

15. Evaluate F(9).

What does F(9) represent in terms of the problem?

$$\mathbf{F(9)} =$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

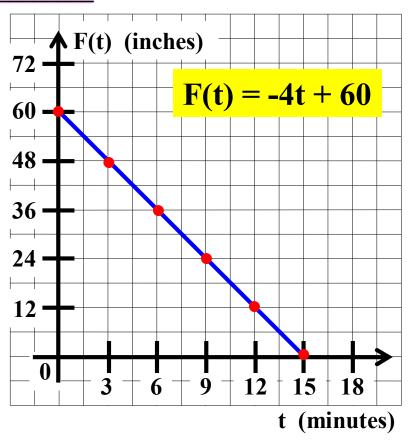
15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]


36 24

15. Evaluate F(9).

12 15

What does F(9) represent in terms of the problem?

$$\mathbf{F}(9) =$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

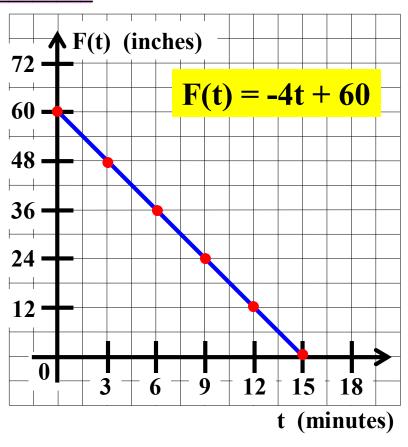
9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]


 $\begin{array}{c|c}
6 & 36 \\
 \longrightarrow 9 & 24 \\
12 & 12
\end{array}$

15

15. Evaluate F(9).

What does F(9) represent in terms of the problem?

$$F(9) = 24$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

36

24

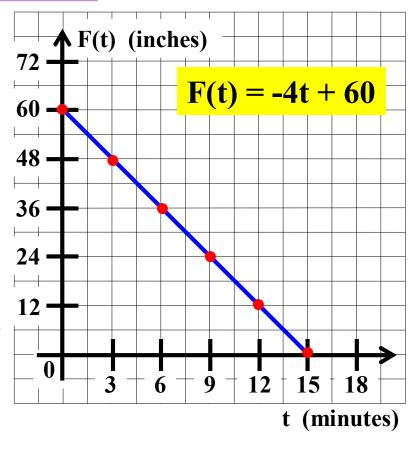
12

0

15

domain

 t
 F(t)
 [0,15]


 0
 60
 range

 3
 48
 [0,60]

15. Evaluate F(9).

What does F(9) represent in terms of the problem?

F(9) = 24 inches

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

60

48

36

24

12

0

0

3

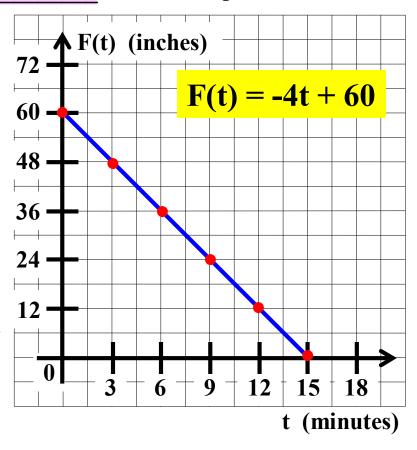
6

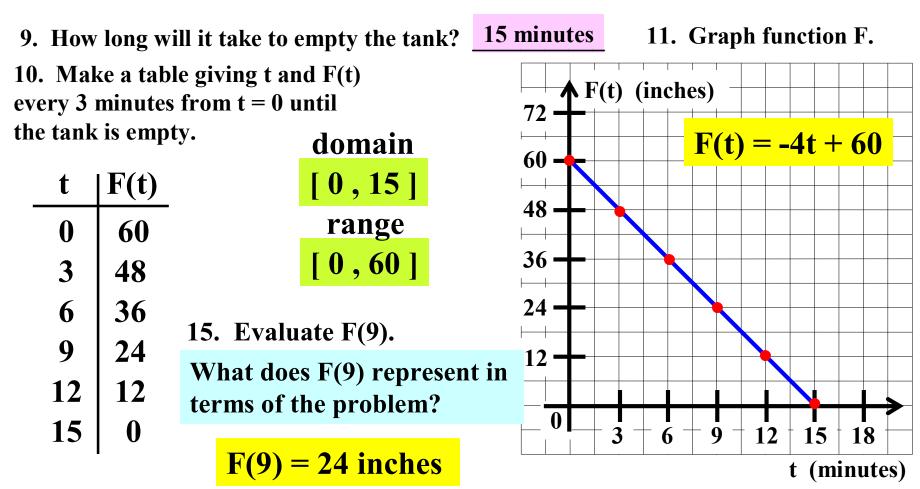
9

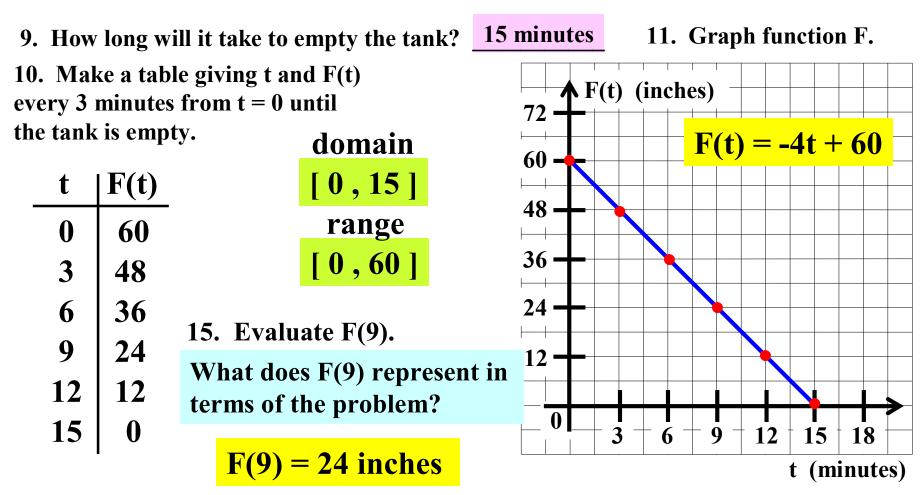
12

15

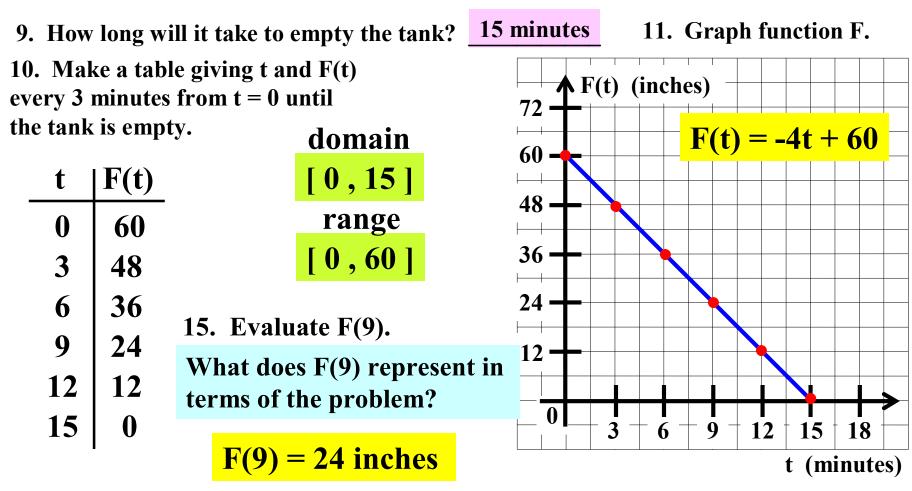
domain

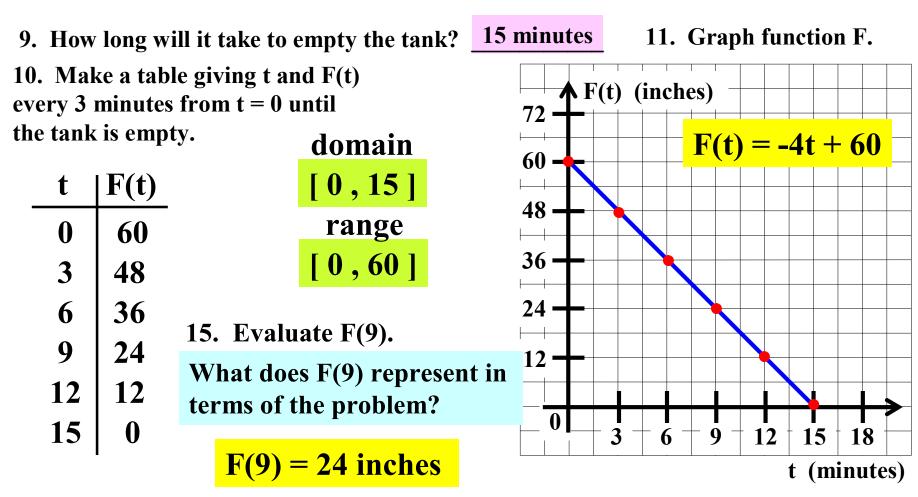

 $\mathbf{F}(\mathbf{t})$ range


[0, 15][0,60]

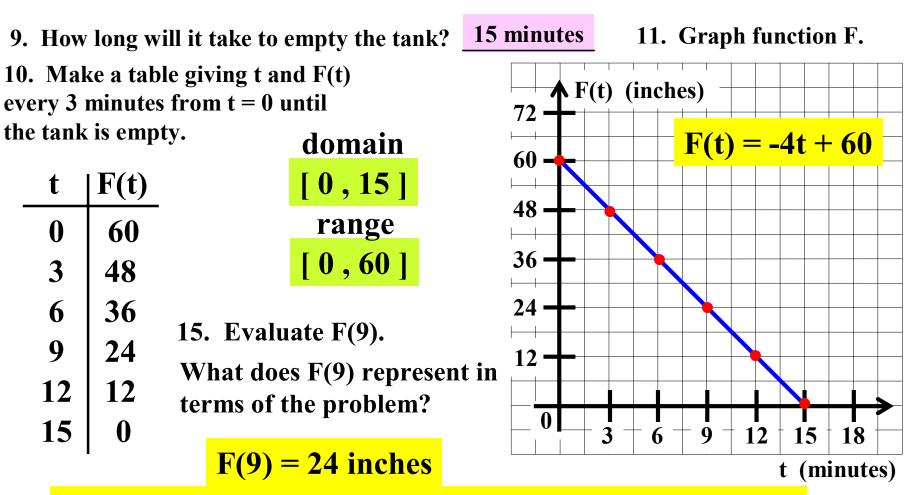

15. Evaluate F(9).

What does F(9) represent in terms of the problem?


F(9) = 24 inches



F(9) represents



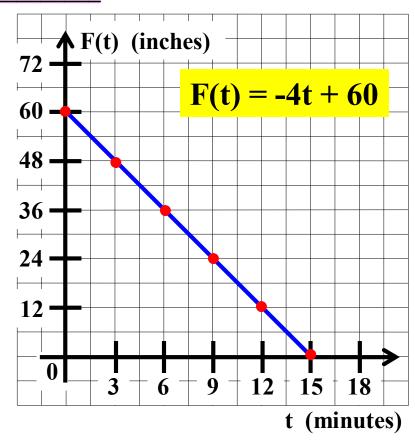
F(9) represents the depth of the water

F(9) represents the depth of the water after 9 minutes.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

F(9) represents the depth of the water after 9 minutes.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

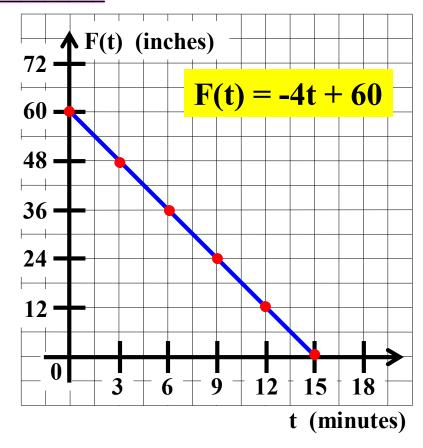
11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

		domai
t	F(t)	[0,15
0	60	range
3	48	[0,60
6	36	
Λ		

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

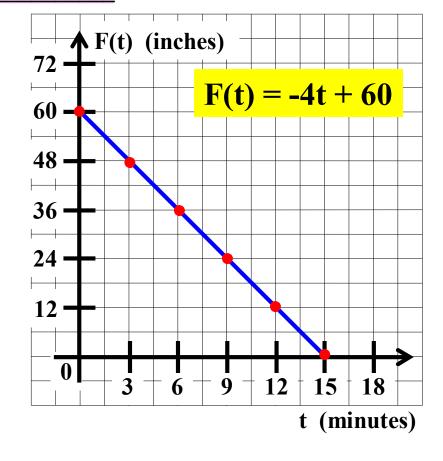
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

domain domain

t	F(t)	[0,15]	
0	60	range	
3	48	[0,60]	
6	36	16. If $F(t) = 20$, then find	d
9	24	the value of t.	
12	12	What does this value of	t
15	0	represent in terms of the problem?	3

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

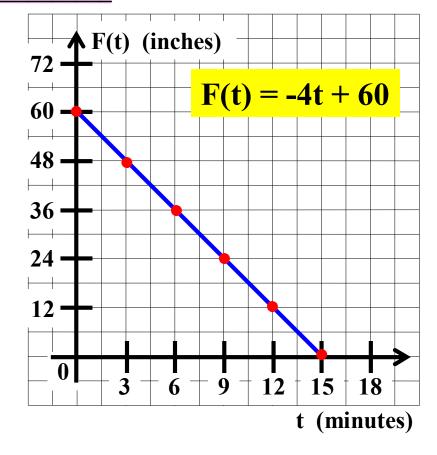
domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

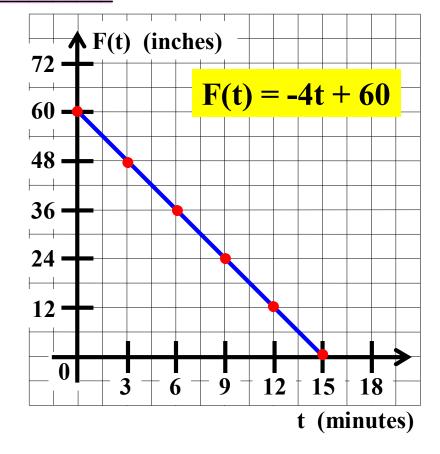
 $\mathbf{F(t)}=\mathbf{20}$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.


10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]
3 6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

 $\mathbf{F(t)}=\mathbf{20}$

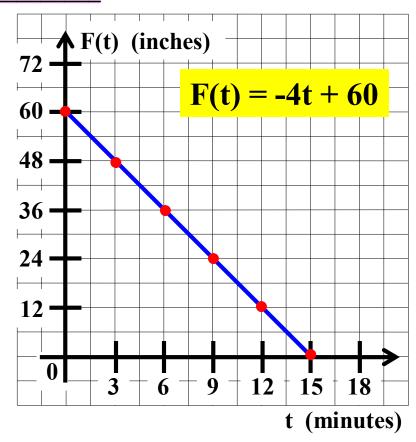
-4t + 60

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes

11. Graph function F.


10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

[0, 15] $\mathbf{F}(\mathbf{t})$ range **60** 0 [0,60]3 48 6 **36** 16. If F(t) = 20, then find 9 **24** the value of t. **12 12** What does this value of t represent in terms of the **15**

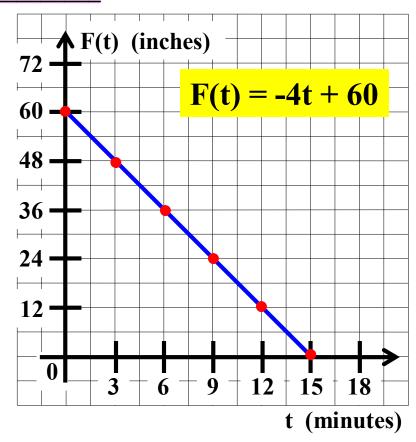
$$F(t) = 20$$

$$-4t + 60 = 20$$

problem?

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

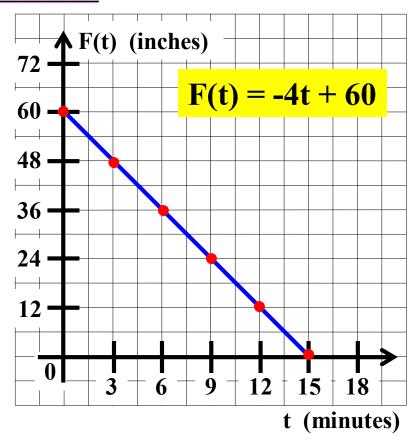
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

$$F(t) = 20$$
 $-4t + 60 = 20$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

		domam
t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

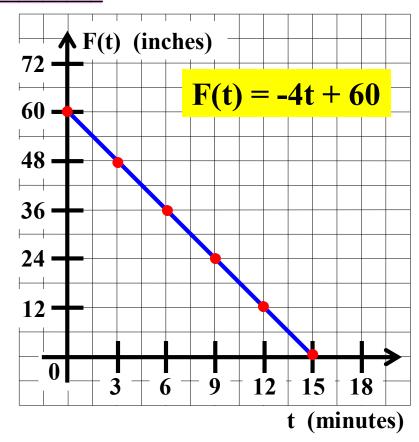
$$F(t) = 20$$

-4t + 60 = 20 \longrightarrow -4t

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

domain

t	F(t)	[0,15]
0	60	range
3 6	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

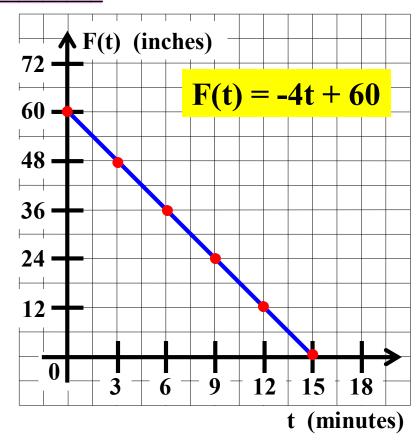
$$F(t) = 20$$

-4t + 60 = 20 \longrightarrow -4t =

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

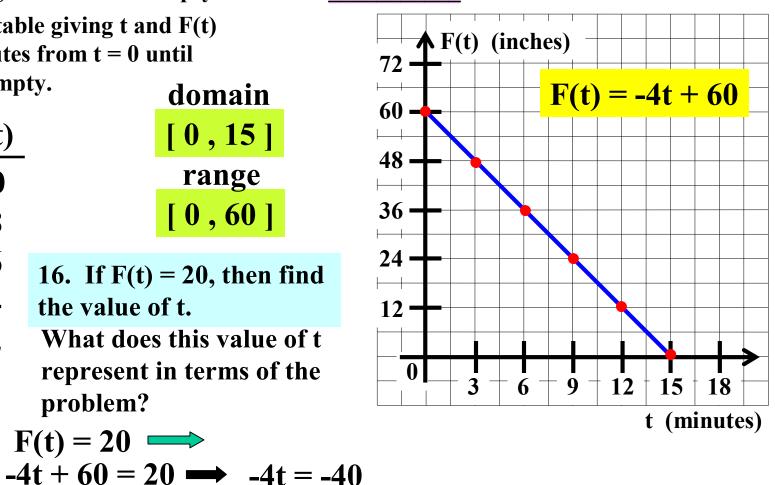
t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?

 $-4t + 60 = 20 \longrightarrow -4t = -40$

 $\mathbf{F(t)} = \mathbf{20}$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

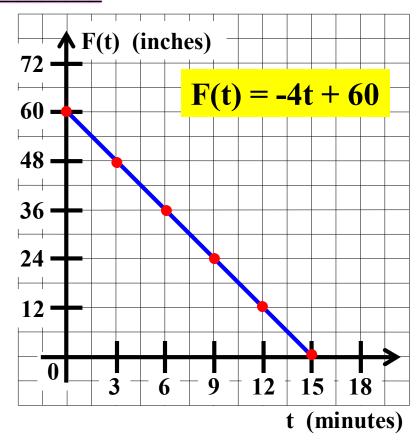
[0, 15] $\mathbf{F}(\mathbf{t})$ range **60** 0 [0,60]3 48 **36** 16. If F(t) = 20, then find 9 **24** the value of t. **12** 12 What does this value of t represent in terms of the **15** problem?

 $\mathbf{F}(\mathbf{t}) = \mathbf{20} \implies$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

		WOIII
t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the
	I	problem?

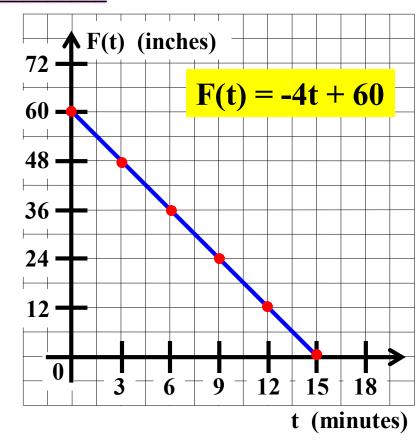
 $\mathbf{F}(\mathbf{t}) = \mathbf{20} \implies \mathbf{t} =$

 $-4t + 60 = 20 \implies -4t = -40$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

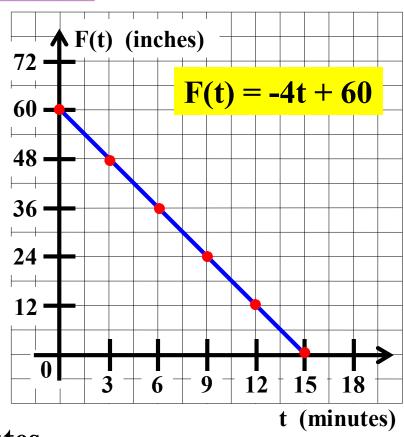
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

t	F(t)	[0,15]			
0	60	range			
3	48	[0,60]			
6	36	16. If $F(t) = 20$, then find			
9	24	the value of t.			
12	12	What does this value of t			
15	0	represent in terms of the problem?			

 $F(t) = 20 \implies t = 10$

 $-4t + 60 = 20 \implies -4t = -40$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

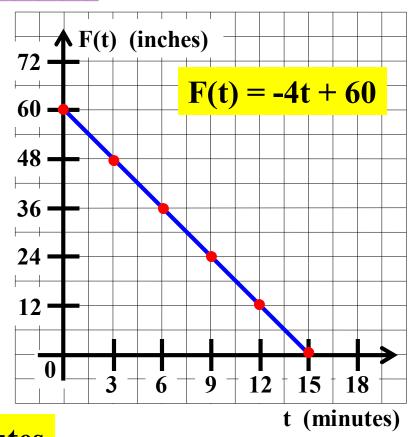
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

		uomam		
t	F(t)	[0,15]		
0	60	range		
3	48	[0,60]		
6	36 24	16. If $F(t) = 20$, then find		
9		the value of t.		
12	12	What does this value of t		
12 15	0	represent in terms of the problem?		

$$F(t) = 20 \longrightarrow t = 10 \text{ minutes}$$

$$-4t + 60 = 20 \longrightarrow -4t = -40$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

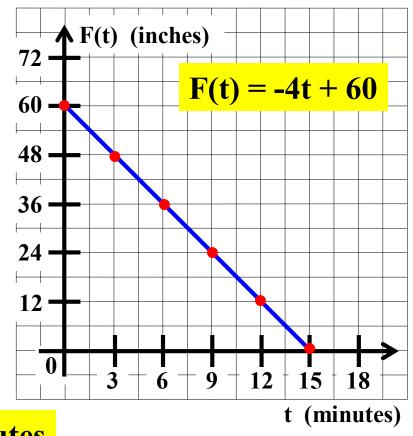
11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

[0, 15] $\mathbf{F}(\mathbf{t})$ range **60** 0 [0,60]3 48 **36** 16. If F(t) = 20, then find 9 **24** the value of t. **12 12** What does this value of t represent in terms of the **15** problem?

$$F(t) = 20 \implies t = 10 \text{ minutes}$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

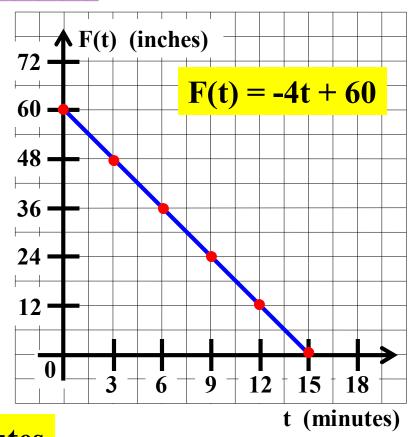
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.domain

t	F(t)	[0,15]
0	60	range
3	48	[0,60]
6	36	16. If $F(t) = 20$, then find
9	24	the value of t.
12	12	What does this value of t
15	0	represent in terms of the problem?
		VI ONICIII.

$$F(t) = 20 \implies t = 10 \text{ minutes}$$

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.

domain

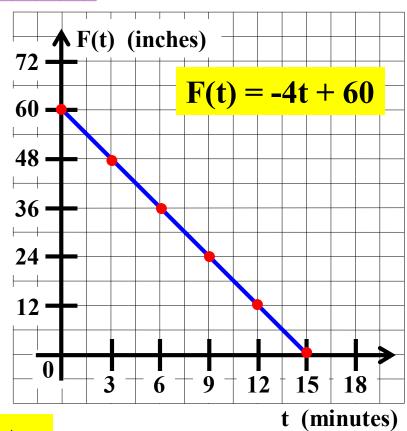
		WOIIIWIII		
t	F(t)	[0,15]		
0	60	range		
3	48	[0,60]		
6	36	16. If $F(t) = 20$, then find		
9	24	the value of t.		
12	12	What does this value of t		
15	0	represent in terms of the		
		problem?		

 $F(t) = 20 \implies t = 10 \text{ minutes}$

This represents

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?


15 minutes

11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.domain

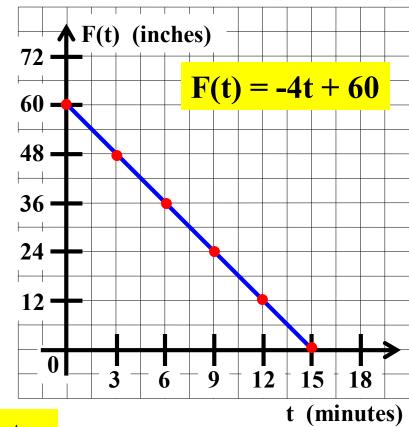
t	F(t)	[0,15]
0	60	range
3	48	[0,60]

6 9	36 24	16. If $F(t) = 20$, then find the value of t.
	12	What does this value of t
15	0	represent in terms of the problem?

 $F(t) = 20 \implies t = 10 \text{ minutes}$

This represents the time

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

11. Graph function F.

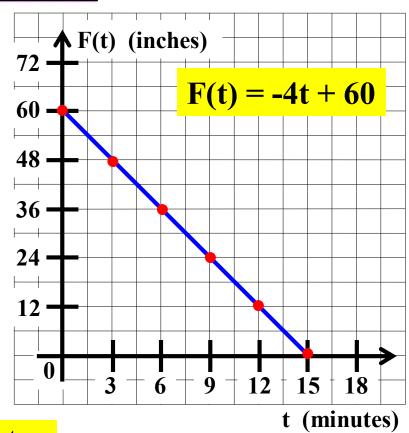
10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

t	F(t)	[0,15]		
0	60	range		
3	48	[0,60]		
6	36 24	16. If $F(t) = 20$, then find		
9	24	the value of t.		
12	12	What does this value of t		
15	0	represent in terms of the		
	1	nroblem?		

 $F(t) = 20 \implies t = 10 \text{ minutes}$

This represents the time it took for the water to be 20 inches deep.

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).


9. How long will it take to empty the tank?

15 minutes

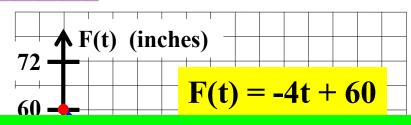
11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty. domain

t	F(t)		[0,15]	
0	60		range	
3	48		[0,60]	
3 6	36 24	16. If F(t)	= 20, then find	
9	24	the value of t.		
12	12	What does this value of t		
15	0	represent in terms of the problem?		

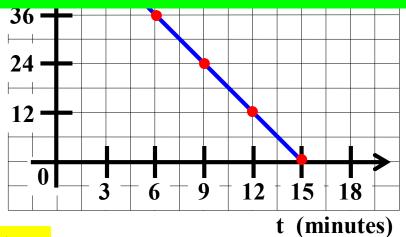
 $F(t) = 20 \implies t = 10 \text{ minutes}$

This represents the time it took for the water to be 20 inches deep.


A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in **minutes**). Let F(t) represent the **depth of the water** in the tank (in **inches**).

9. How long will it take to empty the tank?

15 minutes


11. Graph function F.

10. Make a table giving t and F(t) every 3 minutes from t = 0 until the tank is empty.domain

Good luck on your homework!!!

3 | 48 | [0,60]
 6 | 36 | 16. If F(t) = 20, then find
 9 | 24 | the value of t.
 12 | What does this value of t represent in terms of the problem?

 $F(t) = 20 \implies t = 10 \text{ minutes}$

This represents the time it took for the water to be 20 inches deep.