General Algebra II Lesson \#3 Unit 6
Class Worksheet \#3
For Worksheet \#4

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let \mathbf{t} represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let \mathbf{t} represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

20
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathbf{d}(\mathbf{t})$
0	0
20	60
40	

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
0	0
20	60
40	120
60	

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
0	0
20	60
40	120
60	180

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
0	0
20	60
40	120
60	180
80	

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240
100	

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	180
80	240
100	300

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
40	120
60	180
80	240
100	$\mathbf{3 0 0}$
120	

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
$\mathbf{1 0 0}$	$\mathbf{3 0 0}$
120	$\mathbf{3 6 0}$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let \mathbf{t} represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\Rightarrow| \mathbf{t} | $\mathbf{d}(\mathbf{t})$ |
| :---: | :---: |
| $\mathbf{0}$ | 0 |
| 20 | 60 |
| 40 | $\mathbf{1 2 0}$ |
| 60 | 180 |
| 80 | 240 |
| 100 | 300 |
| 120 | 360 |

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\Rightarrow| \mathbf{t} | $\mathbf{d}(\mathbf{t})$ |
| :---: | :---: |
| $\mathbf{0}$ | 0 |
| 20 | 60 |
| 40 | $\mathbf{1 2 0}$ |
| 60 | 180 |
| 80 | 240 |
| 100 | 300 |
| 120 | 360 |

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

	\mathbf{t}
$\mathbf{0}$	$\mathbf{d}(\mathbf{t})$
$\mathbf{2 0}$	$\mathbf{0}$
$\mathbf{4 0}$	$\mathbf{6 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
$\mathbf{1 2 0}$	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

	\mathbf{t}
$\mathbf{0}$	$\mathbf{d}(\mathbf{t})$
$\mathbf{2 0}$	$\mathbf{0}$
$\mathbf{4 0}$	$\mathbf{6 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
$\mathbf{1 2 0}$	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2 0}$	$\mathbf{6 0}$
$\mathbf{4 0}$	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	$\mathbf{2 4 0}$
$\mathbf{1 0 0}$	$\mathbf{3 0 0}$
$\mathbf{1 2 0}$	$\mathbf{3 6 0}$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2 0}$	$\mathbf{6 0}$
$\mathbf{4 0}$	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
80	$\mathbf{2 4 0}$
$\mathbf{1 0 0}$	$\mathbf{3 0 0}$
$\mathbf{1 2 0}$	$\mathbf{3 6 0}$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let \mathbf{t} represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
$\mathbf{4 0}$	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
$\mathbf{4 0}$	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2 0}$	$\mathbf{6 0}$
40	120
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
	120

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2 0}$	$\mathbf{6 0}$
40	120
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
	120

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2 0}$	$\mathbf{6 0}$
40	120
$\mathbf{6 0}$	$\mathbf{1 8 0}$
80	240
100	$\mathbf{3 0 0}$
120	$\mathbf{3 6 0}$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2 0}$	$\mathbf{6 0}$
40	120
$\mathbf{6 0}$	$\mathbf{1 8 0}$
80	240
$\mathbf{1 0 0}$	$\mathbf{3 0 0}$
120	$\mathbf{3 6 0}$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let \mathbf{t} represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	$\mathbf{0}$
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	$\mathbf{3 0 0}$
120	$\mathbf{3 6 0}$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	180
80	240
100	300
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	180
80	240
100	300
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving $d(t)$ in terms of t.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving $d(t)$ in terms of t. $d(t)=$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving $d(t)$ in terms of $t \quad d(t)=3 t$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$d(t)$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving $d(t)$ in terms of $t \quad d(t)=\mathbf{3 t}$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	$\mathbf{1 2 0}$
60	180
80	240
100	300
120	360

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
20	$\mathbf{6 0}$
$\mathbf{4 0}$	$\mathbf{1 2 0}$
$\mathbf{6 0}$	$\mathbf{1 8 0}$
$\mathbf{8 0}$	240
100	300
120	$\mathbf{3 6 0}$

2. Graph function d.

What is the domain of function d ?

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

domain
2. Graph function d.

What is the domain of function d ?

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	120
60	180
80	240
100	300
120	360

domain
2. Graph function d.

What is the domain of function d ?

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	$\mathbf{6 0}$
40	120
60	180
80	240
100	300
120	360

domain
2. Graph function d.

What is the domain of function d?
[0

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathbf{t})$
0	0
20	$\mathbf{6 0}$
40	120
60	180
80	240
100	300
120	360

domain
2. Graph function d.

What is the domain of function d?
[0,

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

domain
2. Graph function d.

What is the domain of function $d ? ~[0,120$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$
0	0
20	60
40	120
60	180
80	240
100	300
120	360

domain
2. Graph function d.

What is the domain of function d? [0, 120]

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	

domain
2. Graph function d.

What is the domain of function d? [0,120]

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		
$\mathbf{4 0}$	$\mathbf{1 2 0}, \mathbf{1 2 0}]$		
$\mathbf{6 0}$	$\mathbf{1 8 0}$		
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	domain
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	

2. Graph function d.

What is the range of function d ?

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$	
0	0	
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d?

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	$\mathrm{d}(\mathrm{t})$	
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d?

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	domain
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d ?
[0

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d ?
[0,

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	domain
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d ?

$$
[0,360
$$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	domain
0	0	$[0,120]$
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d ?
$\underline{[0,360]}$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$[0,120]$
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	
	range	

2. Graph function d.

What is the range of function d ?
$\underline{[0,360]}$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
20	$\mathbf{6 0}$		$0,120]$
40	$\mathbf{1 2 0}$	range	
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0,360]$
80	240		
100	$\mathbf{3 0 0}$		
120	360		

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0,120]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0, \mathbf{3 6 0}]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0,120]$
40	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0,360]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	360		

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$\begin{gathered} \text { domain } \\ {[0,120]} \end{gathered}$
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

$d(60)=$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	
20	60	
40	120	range
$\rightarrow 60$	180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

d(60) $=$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$[0,120]$
20	60	
40	120	range
$\rightarrow 60$	180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?

$$
d(60)=180
$$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$[\mathbf{0}, \mathbf{1 2 0}]$
20	60	
40	120	range
$\rightarrow 60$	180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

$\mathrm{d}(60)=180$ feet

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let \mathbf{t} represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	$\begin{gathered} \text { domain } \\ {[0,120]} \end{gathered}$
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?
$\mathrm{d}(60)=180$ feet
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0,120]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0,360]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

$d(60)=180$ feet $\mathbf{d}(60)$ represents the distance John walked.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$\mathbf{0}, \mathbf{1 2 0}]$
40	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0, \mathbf{3 6 0}]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

$d(60)=180$ feet $\mathrm{d}(60)$ represents the distance John walked in 60 seconds.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0,120]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0,360]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

Evaluate d(60). What does d(60) represent in terms of the problem?
2. Graph function d.

$d(60)=180$ feet $\mathrm{d}(60)$ represents the distance John walked in 60 seconds.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
20	$\mathbf{6 0}$		$0,120]$
40	$\mathbf{1 2 0}$	range	
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0,360]$
80	240		
100	$\mathbf{3 0 0}$		
120	360		

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
$\mathbf{2 0}$	$\mathbf{6 0}$	$[\mathbf{0 , 1 2 0}]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$	range
$\mathbf{6 0}$	$\mathbf{1 8 0}$	$[\mathbf{0 , 3 6 0}]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$	
$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	
$\mathbf{1 2 0}$	$\mathbf{3 6 0}$	

If $d(t)=60$, then find the value of t.
2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	doma
0	0	$[0,120]$
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

If $d(t)=\mathbf{6 0}$, then find the value of t.
2. Graph function d.

$$
d(t)=60 \Longleftrightarrow t=
$$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
20	$\mathbf{6 0}$	$[0,120]$
40	$\mathbf{1 2 0}$	range
$\mathbf{6 0}$	$\mathbf{1 8 0}$	$[0,360]$
80	240	
100	$\mathbf{3 0 0}$	
120	360	

If $d(t)=60$, then find the value of t.
2. Graph function d.

$$
d(t)=60
$$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
$\mathbf{2 0}$	$\mathbf{6 0}$	$[0,120]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$	range
$\mathbf{6 0}$	$\mathbf{1 8 0}$	$[0,360]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$	
100	$\mathbf{3 0 0}$	
120	$\mathbf{3 6 0}$	

If $d(t)=60$, then find the value of t.

$$
d(t)=60 \Longleftrightarrow t=20
$$

2. Graph function d.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

t	d(t)	
0	0	domain
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

If $d(t)=60$, then find the value of t.

$$
d(t)=60 \Longleftrightarrow t=20 \text { seconds }
$$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving \mathbf{t} and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0,120]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$	range	
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0,360]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

If $d(t)=60$, then find the value of t.

$$
d(t)=60 \Longleftrightarrow t=20 \text { seconds }
$$

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0,120]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$	range	
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0, \mathbf{3 6 0}]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

If $d(t)=60$, then find the value of t. What does this value of t represent in terms of the problem? $d(t)=60 \longmapsto t=20$ seconds

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathbf{d}(\mathbf{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0, \mathbf{1 2 0}]$
40	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0, \mathbf{3 6 0}]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

If $d(t)=60$, then find the value of t. What does this value of t represent
2. Graph function d. in terms of the problem? $\quad \mathbf{d}(\mathbf{t})=\mathbf{6 0} \Longrightarrow \mathbf{t}=\mathbf{2 0}$ seconds

This represents the time it took John to walk 60 feet.

General Algebra II CWS \#3 Unit 6

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet).

1. Make a table giving t and $d(t)$ every 20 seconds from $t=0$ to $t=120$.

\mathbf{t}	$\mathrm{d}(\mathrm{t})$		
$\mathbf{0}$	$\mathbf{0}$		domain
$\mathbf{2 0}$	$\mathbf{6 0}$		$0, \mathbf{1 2 0}]$
$\mathbf{4 0}$	$\mathbf{1 2 0}$		range
$\mathbf{6 0}$	$\mathbf{1 8 0}$		$[0, \mathbf{3 6 0}]$
$\mathbf{8 0}$	$\mathbf{2 4 0}$		
100	$\mathbf{3 0 0}$		
120	$\mathbf{3 6 0}$		

If $d(t)=60$, then find the value of t. What does this value of t represent in terms of the problem? $\quad d(t)=\mathbf{6 0} \Longrightarrow t=20$ seconds

This represents the time it took John to
walk 60 feet.
This represents the time it took John to
walk 60 feet.
2. Graph function d.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.
9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.
9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	
1	
1.5	
2	
2.5	
3	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	
1.5	
2	
2.5	
3	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	
2	
2.5	
3	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	
2.5	
3	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	
3	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathbf{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving $D(t)$ in terms of t.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving $D(t)$ in terms of t. $D(t)$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving $D(t)$ in terms of $t . \quad D(t)=$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving $D(t)$ in terms of $t . \quad D(t)=10 t$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving $D(t)$ in terms of $t . \quad D(t)=10 t$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ? [

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ? [0

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ? [0 ,

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ? $[0,3$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ? [0,3$]$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the domain of function D ? [0,3$]$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the range of function D ?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the range of function D ?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. What is the range of function D ? [0

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

12. What is the range of function D ? [0 ,

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

12. What is the range of function D ? $[0,30$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

12. What is the range of function D ? [0,30]

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

9. Graph function D.

10. What is the range of function D ? [0,30$]$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate $D(1.2)$. What does $D(1.2)$
14. Graph function D.

t (hours) represent in terms of the problem?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate $D(1.2)$. What does $D(1.2)$
14. Graph function D.

t (hours) represent in terms of the problem?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate $D(1.2)$. What does $D(1.2)$
14. Graph function D.

t (hours) represent in terms of the problem?
D(1.2) =

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate D(1.2). What does D(1.2)
14. Graph function D.

t (hours) represent in terms of the problem?
D(1.2) $=$
$D(1.2)=10(1.2)$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

13. Evaluate $D(1.2)$. What does $D(1.2)$
9. Graph function D.

t (hours) represent in terms of the problem?
$D(1.2)=12$
$D(1.2)=10(1.2)$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate D(1.2). What does D(1.2)
14. Graph function D.

t (hours) represent in terms of the problem?
$D(1.2)=12$ miles
$D(1.2)=10(1.2)$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate D(1.2). What does D(1.2)
14. Graph function D.

t (hours) represent in terms of the problem?
$\mathrm{D}(1.2)=12$ miles

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate D(1.2). What does $D(1.2)$
14. Graph function D.

t (hours) represent in terms of the problem?
$\mathrm{D}(1.2)=12$ miles

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate D(1.2). What does D(1.2)
14. Graph function D.

t (hours) represent in terms of the problem?
$\mathbf{D}(1.2)=\mathbf{1 2}$ miles $\mathbf{D}(1.2)$ represents the distance Mary biked.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

$\begin{aligned} & \text { domain } \\ & {[0,3]} \end{aligned}$
range
[0, 30]

13. Evaluate $D(1.2)$. What does $D(1.2)$
14. Graph function D.

t (hours) represent in terms of the problem?
$\mathbf{D}(1.2)=\mathbf{1 2}$ miles $\mathbf{D}(1.2)$ represents the distance Mary biked in 1.2 hours.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D (t)}$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	$\mathbf{1 0}$	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

13. Evaluate $D(1.2)$. What does $D(1.2)$
14. Graph function D.

t (hours) represent in terms of the problem?
$\mathbf{D}(1.2)=\mathbf{1 2}$ miles $\mathbf{D}(1.2)$ represents the distance Mary biked in 1.2 hours.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

9. Graph function D.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

$\left.\begin{array}{c}\text { domain } \\ {[0,3]} \\ \text { range } \\ {[0,30]}\end{array}\right]$
14. If $D(t)=15$, then find the value of t. What does this value of t represent
9. Graph function D.
 in terms of the problem?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t. What does this value of t represent
15. Graph function D.
 in terms of the problem?

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	0	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t. What does this value of t represent
15. Graph function D.
 in terms of the problem? $\quad D(t)=15$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t. What does this value of t represent
15. Graph function D.
 in terms of the problem? $\quad D(t)=15$

10t

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t. What does this value of t represent
15. Graph function D.
 in terms of the problem? $\quad \mathbf{D}(\mathbf{t})=15$

$$
10 t=15
$$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	0	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t. What does this value of t represent
15. Graph function D.
 in terms of the problem?
$\mathrm{D}(\mathrm{t})=15$
$10 t=15$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

\mathbf{t}	$\mathbf{D}(\mathbf{t})$	
0	0	
domain		
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t.

What does this value of t represent
9. Graph function D.
in terms of the problem?

$$
\begin{aligned}
\mathbf{D}(\mathrm{t}) & =15 \Longleftrightarrow \mathrm{t}=1.5 \\
10 \mathrm{t} & =15
\end{aligned}
$$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $\mathrm{D}(\mathrm{t})=15$, then find the value of t .

What does this value of t represent in terms of the problem? $\quad D(t)=15 \Longleftrightarrow t=1.5$ hours

$$
10 t=15
$$

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	$\mathbf{0}$	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $\mathrm{D}(\mathrm{t})=15$, then find the value of t . What does this value of t represent in terms of the problem? $\quad D(t)=15 \Longleftrightarrow t=1.5$ hours

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let \mathbf{t} represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$\mathrm{D}(\mathrm{t})$	
$\mathbf{0}$	0	domain
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t.

What does this value of t represent
9. Graph function D.

in terms of the problem? $D(t)=15 \Longrightarrow t=1.5$ hours
This represents the time it took Mary to bike 15 miles.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

t	$D(t)$	
0	0	
domain		
.5	5	$[0,3]$
1	10	range
1.5	15	$[0,30]$
2	20	
2.5	25	
3	30	

14. If $D(t)=15$, then find the value of t.

What does this value of t represent
9. Graph function D.

t (hours) in terms of the problem? $D(t)=15 \Longrightarrow t=1.5$ hours

This represents the time it took Mary to bike 15 miles.

General Algebra II CWS \#3 Unit 6

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and $D(t)$ represent the distance she has gone (in miles).
8. Make a table giving t and $D(t)$ every half hour from $t=0$ to $t=3$.

9. Graph function D.

Good luck on your homework !!

2	20
2.5	25
3	30

14. If $\mathrm{D}(\mathrm{t})=15$, then find the value of t . What does this value of t represent

t (hours) in terms of the problem? $D(t)=15 \Longrightarrow t=1.5$ hours

This represents the time it took Mary to bike 15 miles.

