General Algebra II Lesson #3 Unit 6 Class Worksheet #3 For Worksheet #4

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t)every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	
0	0	
20	60	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

d(t)
0
60

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
• 0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
• 0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
→ 60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
→ 60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

d(t)
0
60
120
180
240
300
360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t d(t)	
0 0	
20 60	
40 120	
60 180	
80 240	
100 300	
120 360	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	_ d(t)
0	0
20	60
40	120
60	180
80	240
→ 100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	_ d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
→ 120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
→ 120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving d(t) in terms of t.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving d(t) in terms of t.

 $\mathbf{d}(\mathbf{t}) =$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving d(t) in terms of t.

 $\mathbf{d}(\mathbf{t}) = \mathbf{3t}$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

3. Write an equation giving d(t) in terms of t.

$$\mathbf{d}(\mathbf{t}) = \mathbf{3t}$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	
0	0	
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
omain		

d

2. Graph function d.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	
0	0	
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	
omain		

d

2. Graph function d.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

_	t	d(t)
-	0	0
	20	60
	40	120
	60	180
	80	240
	100	300
	120	360
domain		

2. Graph function d.

[0]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

	t	d(t)
-	0	0
	20	60
	40	120
	60	180
	80	240
	100	300
	120	360
domain		

2. Graph function d.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

_	t	d(t)
-	0	0
	20	60
	40	120
	60	180
	80	240
	100	300
	120	360
domain		

2. Graph function d.

What is the domain of function d?

[0,120]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

_	t	d(t)
-	0	0
	20	60
	40	120
	60	180
	80	240
	100	300
	120	360
domain		

2. Graph function d.

What is the domain of function d?

[0,120]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

2. Graph function d.

What is the domain of function d?

[0,120]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	

2. Graph function d.

What is the range of function d?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

What is the range of function d?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

What is the range of function d?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

2. Graph function d.

What is the range of function d?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

What is the range of function d?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

What is the range of function d?

[0,360]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

What is the range of function d?

[0,360]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

\mathbf{A} d(t) (feet) **d(t)** t d(t) = 3t360 domain 0 0 [0,120] 300 -20 **60** range 240 · **40** 120 [0,360] 180 **60** 180 80 240 120 -100 300 **60** 120 360 0 range 20 **40 60** 80 100 120 t (seconds)

What is the range of function d?

[0,360]

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

$\frac{t}{d(t)}$ domain	
0 0 0 0 0	
20 60	J
40 120 range	1
60 180 [0,360]	J
80 240	
100 300	
120 360	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	range
40	120	
60	180	[0,360]
80	240	
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem?

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem? d(60) =

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	range [0,360]
60	180	
80	240	
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem? d(60) =

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	range
40 60	120 180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem? d(60) = 180

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	range
40	120	[0,360]
60	180	[0,500]
80	240	
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem? d(60) = 180 feet

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem?

d(60) = 180 feet

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

\mathbf{A} d(t) (feet) **d(t)** t d(t) = 3t360 domain 0 0 0,120] 300 **60** 20 240. range **40** 120 [0,360] 180 180 **60** 80 240 120 -100 300 **60** 120 360 0 20 **40 60** 80 100 120 Evaluate d(60). What does d(60) t (seconds) represent in terms of the problem?

d(60) = 180 feet d(60) represents the distance John walked.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain	360
0	0	[0, 120]	300
20	60		240 ·
40	120	range	
60	180		180
80	240		120
100	300		60
120	360		

Evaluate d(60). What does d(60) represent in terms of the problem?

2. Graph function d.

d(60) = 180 feet d(60) represents the distance John walked in 60 seconds.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	_ d(t)	domain
0	0	[0, 120]
20	60	•
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?

d(60) = 180 feet

d(60) represents the distance John walked in 60 seconds.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

$\frac{t}{d(t)}$ domain	•
0 0 0 0 0	
20 60	J
40 120 range	1
60 180 [0,360]	J
80 240	
100 300	
120 360	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	range
40	120	[0,360]
60	180	
80	240	
100	300	
120	360	

If d(t) = 60, then find the value of t.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

\mathbf{A} d(t) (feet) **d(t)** t d(t) = 3t360. domain 0 0 0,120] 300 -**60** 20 range 240 -**40** 120 [0,360] 180 180 **60** 80 240 120 -100 300 **60** · 120 360 0 If d(t) = 60, then find the value of t. 20 **40** 60 80 100 120 t (seconds) $\mathbf{d}(\mathbf{t}) = 60 \implies$ **t** =

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

If d(t) = 60, then find the value of t.

t	d(t)	domain
0	0	[0, 120]
20	60	• • •
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	[0, 120]
20	60	
40	120	range
60	180	[0,360]
80	240	
100	300	
120	360	

2. Graph function d.

If d(t) = 60, then find the value of t. What does this value of t represent in terms of the problem? d(t) = 60

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

\mathbf{A} d(t) (feet) **d(t)** t d(t) = 3t360 domain 0 0 0,120] 300 -**60** 20 240 range **40** 120 [0,360] 180 180 **60** 80 240 120 -100 300 **60** 120 360 0 If d(t) = 60, then find the value of t. 20 **40 60** 80 100 120 What does this value of t represent t (seconds) $d(t) = 60 \implies t = 20$ seconds in terms of the problem? This represents the time it took John to walk 60 feet.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

<u>t</u> 0	d(t) 0	domain [0,120]	360 A d 300 A	l(t) (f	eet) –	- d	<mark>(t)</mark> :	= 3t	
20 40	60 120 180	range	240 180						
60 80 100	180 240 300		120						
100 120 If d(t) = 60, th	360	ha valua of t							+>
What does thi	is value of			20 t = 2	40 † <mark>0 se</mark>	60 † con	80 ds		120 conds)
	_	This represen walk 60 feet.						n to	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	
.5	
1	
1.5	
2	
2.5	
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	
1	
1.5	
2	
2.5	
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	
1.5	
2	
2.5	
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	
2	
2.5	
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	
2.5	
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving D(t) in terms of t.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving D(t) in terms of t.

D(t)

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving D(t) in terms of t.

 $\mathbf{D}(\mathbf{t}) =$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving D(t) in terms of t. D(t) = 10t

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving D(t) in terms of t. D(

D(t) = 10t

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

11. What is the domain of function D?

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

11. What is the domain of function D?

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9.	Graph	function	D.
----	-------	----------	----

11. What is the domain of function D? [0]

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

11. What is the domain of function D? [0,

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

11. What is the domain of function D? [0,3

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

11. What is the domain of function D? [0,3]

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

11. What is the domain of function D? [0,3]

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	
.5	5	
1	10	
1.5	15	
2	20	
2.5	25	
3	30	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

12. What is the range of function D?

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	domain
.5	5	range
1	10	[0, 30]
1.5	15	
2	20	
2.5	25	
3	30	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	domain
.5	5	range
1	10	[0, 30]
1.5	15	
2	20	
2.5	25	
3	30	

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	domain
.5	5	range
1	10	$\begin{bmatrix} 0, 30 \end{bmatrix}$
1.5	15	
2	20	
2.5	25	
3	30	

9. Graph function D.

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem?

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

in terms of the problem?

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

10t

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	domain [0,3]
.5	5	range
1	10	[0, 30]
1.5	15	
2	20	
2.5	25	
3	30	

9. Graph function D.

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem? D(t) = 15

10t = 15

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

10t = 15

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

10t = 15

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

