General Algebra II Lesson #1 Unit 5 Class Worksheet #1 For Worksheets #1 and #2

1.
$$T = 3x + 5y$$

$$T_{max} =$$
 at _____
 $T_{min} =$ at _____

1.
$$T = 3x + 5y$$

$$T_{max} =$$
____ at ____
 $T_{min} =$ ____ at ____

At A(-1,0)
$$\implies$$
 T = -3 + 0 = -3

1.
$$T = 3x + 5y$$

$$T_{max} = \underline{\qquad} at \underline{\qquad}$$
$$T_{min} = \underline{\qquad} at \underline{\qquad}$$

At A(-1,0)
$$\implies$$
 T = -3 + 0 = -3
At B(5,-1) \implies T = 15 + -5 = 10

1.
$$T = 3x + 5y$$

 $T_{max} = ____at ______
 $T_{min} = ___at ______$
At A(-1,0) \implies $T = -3 + 0 = -3$
At B(5,-1) \implies $T = 15 + -5 = 10$
At C(8,2) \implies $T = 24 + 10 = 34$$

At D(5,8) \longrightarrow T = 15 + 40 = 55

1.
$$T = 3x + 5y$$

 $T_{max} = _$ at _____
 $T_{min} = _$ at _____
At A(-1,0) \implies T = -3 + 0 = -3
At B(5,-1) \implies T = 15 + -5 = 10
At C(8,2) \implies T = 24 + 10 = 34
At D(5,8) \implies T = 15 + 40 = 55

At E(-1,5) \implies T = -3 + 25 = 22

1.
$$T = 3x + 5y$$

 $T_{max} = 55$ at (5,8)
 $T_{min} = at$
At A(-1,0) \implies $T = -3 + 0 = -3$
At B(5,-1) \implies $T = 15 + -5 = 10$
At C(8,2) \implies $T = 24 + 10 = 34$
At D(5,8) \implies $T = 15 + 40 = 55$
At E(-1,5) \implies $T = -3 + 25 = 22$

1.
$$T = 3x + 5y$$

 $T_{max} = 55$ at (5,8)
 $T_{min} = -3$ at (-1,0)
At A(-1,0) \implies $T = -3 + 0 = -3$
At B(5,-1) \implies $T = 15 + -5 = 10$
At C(8,2) \implies $T = 24 + 10 = 34$
At D(5,8) \implies $T = 15 + 40 = 55$
At E(-1,5) \implies $T = -3 + 25 = 22$

2.
$$T = 6x \circ 2y$$

 $T_{max} = ____ at _____ at ______$

2.
$$T = 6x \circ 2y$$

 $T_{max} = ____ at _____ at ______$

At A(-1,0)
$$\implies$$
 T = -6 ó 0 = -6

2.
$$T = 6x \circ 2y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies $T = -6 \circ 0 = -6$
At B(5,-1) \implies $T = 30 \circ -2 = 32$

2.
$$T = 6x \circ 2y$$

 $T_{max} = _ at _$
 $T_{min} = _ at _$
At A(-1,0) \implies $T = -6 \circ 0 = -6$
At B(5,-1) \implies $T = 30 \circ -2 = 32$
At C(8,2) \implies $T = 48 \circ 4 = 44$

The **maximum** and the **minimum** values of T will occur at a vertex of the region.

2.
$$T = 6x \circ 2y$$

 $T_{max} = _ at _$
 $T_{min} = at _$
At A(-1,0) \implies $T = -6 \circ 0 = -6$
At B(5,-1) \implies $T = 30 \circ -2 = 32$
At C(8,2) \implies $T = 48 \circ 4 = 44$

At D(5,8) \longrightarrow T = 30 ó 16 = 14

The **maximum** and the **minimum** values of T will occur at a vertex of the region.

2.
$$T = 6x \circ 2y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies T = -6 \overline 0 = -6
At B(5,-1) \implies T = 30 \overline -2 = 32
At C(8,2) \implies T = 48 \overline 4 = 44
At D(5,8) \implies T = 30 \overline 16 = 14

At E(-1,5) \implies T = -6 \circ 10 = -16

2.
$$T = 6x \circ 2y$$

 $T_{max} = 44$ at (8,2)
 $T_{min} = 2$ at _____

At A(-1,0)
$$\implies$$
 T = -6 $\circ 0$ = -6

At B(5,-1) \longrightarrow T = 30 \circ -2 = **32**

At C(8,2) \implies T = 48 ó 4 = **44**

At D(5,8) \implies T = 30 ó 16 = 14

At E(-1,5) \implies T = -6 ó 10 = -16

2.
$$T = 6x \circ 2y$$

 $T_{max} = 44$ at (8,2)
 $T_{min} = -16$ at (-1,5)

At A(-1,0)
$$\implies$$
 T = -6 \circ 0 = -6

At B(5,-1) \longrightarrow T = 30 \acute{o} -2 = **32**

At C(8,2) \implies T = 48 ó 4 = **44**

At D(5,8) \implies T = 30 ó 16 = 14

At E(-1,5) \implies T = -6 ó 10 = -16

3.
$$T = x \circ 3y$$

 $T_{max} = ___ at ____$
 $T_{min} = __ at ___$

3.
$$T = x \circ 3y$$

 $T_{max} = ___ at ___$
 $T_{min} = __ at ___$

At A(-1,0)
$$\implies$$
 T = -1 $\circ 0$ = -1

3.
$$T = x \circ 3y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies T = -1 $\circ 0 = -1$
At B(5,-1) \implies T = 5 $\circ -3 = 8$

3.
$$T = x \circ 3y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies T = -1 $\circ 0 = -1$
At B(5,-1) \implies T = 5 $\circ -3 = 8$
At C(8,2) \implies T = 8 $\circ 6 = 2$

3.
$$T = x \circ 3y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies T = -1 $\circ 0$ = -1
At B(5,-1) \implies T = 5 $\circ -3 = 8$
At C(8,2) \implies T = 8 $\circ 6 = 2$
At D(5,8) \implies T = 5 $\circ 24 = -19$

3.
$$T = x \circ 3y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies T = -1 $\circ 0$ = -1
At B(5,-1) \implies T = 5 $\circ -3 = 8$
At C(8,2) \implies T = 8 $\circ 6 = 2$
At D(5,8) \implies T = 5 $\circ 24 = -19$
At E(-1,5) \implies T = -1 $\circ 15 = -16$

3.
$$T = x \circ 3y$$

 $T_{max} = \underline{8}$ at $\underline{(5,-1)}$
 $T_{min} = \underline{3}$ at $\underline{(5,-1)}$
At A(-1,0) \Longrightarrow T = -1 $\circ 0$ = -1
At B(5,-1) \Longrightarrow T = 5 $\circ -3 = 8$
At C(8,2) \Longrightarrow T = 8 $\circ 6 = 2$
At D(5,8) \Longrightarrow T = 5 $\circ 24 = -19$
At E(-1,5) \Longrightarrow T = -1 $\circ 15 = -16$

3.
$$T = x \circ 3y$$

 $T_{max} = \underline{8}$ at $\underline{(5,-1)}$
 $T_{min} = \underline{-19}$ at $\underline{(5,8)}$
At A(-1,0) \implies T = -1 $\circ 0$ = -1
At B(5,-1) \implies T = 5 $\circ -3 = 8$
At C(8,2) \implies T = 8 $\circ 6 = 2$
At D(5,8) \implies T = 5 $\circ 24 = -19$
At E(-1,5) \implies T = -1 $\circ 15 = -16$

4.
$$T = x + 2y$$

 $T_{max} = _$ at _____
 $T_{min} = _$ at _____

4.
$$T = x + 2y$$

 $T_{max} = _____ at _____$
 $T_{min} = ____ at _____$

At A(-1,0)
$$\implies$$
 T = -1 + 0 = -1

4.
$$T = x + 2y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies $T = -1 + 0 = -1$
At B(5,-1) \implies $T = 5 + -2 = 3$

4.
$$T = x + 2y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies T = -1 + 0 = -1
At B(5,-1) \implies T = 5 + -2 = 3
At C(8,2) \implies T = 8 + 4 = 12

4.
$$T = x + 2y$$

 $T_{max} = _$ at $_$
 $T_{min} = _$ at $_$
At A(-1,0) \implies $T = -1 + 0 = -1$
At B(5,-1) \implies $T = 5 + -2 = 3$

At C(8,2) \longrightarrow T = 8 + 4 = 12

At D(5,8) \implies T = 5 + 16 = **21**

4.
$$T = x + 2y$$

 $T_{max} = _____ at _____
 $T_{min} = ___ at _____$
At A(-1,0) $\implies T = -1 + 0 = -1$$

At B(5,-1) \longrightarrow T = 5 + -2 = 3

At C(8,2) \longrightarrow T = 8 + 4 = 12

At D(5,8) \implies T = 5 + 16 = **21**

At E(-1,5) \longrightarrow T = -1 + 10 = 9

4.
$$T = x + 2y$$

 $T_{max} = 21$ at (5,8)
 $T_{min} = 21$ at _____

At A(-1,0)
$$\implies$$
 T = -1 + 0 = -1
At B(5,-1) \implies T = 5 + -2 = 3

At C(8,2) \longrightarrow T = 8 + 4 = 12

At D(5,8) \implies T = 5 + 16 = **21**

At E(-1,5) \longrightarrow T = -1 + 10 = 9

4.
$$T = x + 2y$$

 $T_{max} = 21$ at (5,8)
 $T_{min} = -1$ at (-1,0)
At A(-1,0) \implies $T = -1 + 0 = -1$
At B(5,-1) \implies $T = 5 + -2 = 3$
At C(8,2) \implies $T = 8 + 4 = 12$
At D(5,8) \implies $T = 5 + 16 = 21$

At E(-1,5) \implies T = -1 + 10 = 9

小У - 12 (3,10) (-3,8) (12.75,3.5) (-3,3)Х \rightarrow 8 - 12 -4 (3,-3) --4

General Algebra II CWS #1 Unit 5

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5.
$$F = x + 2y$$

 $F_{max} = _$ at _____
 $F_{min} = _$ at _____

мУ 12 (3,10) (-3,8) (12.75,3.5) $(-3,3)^{-1}$ × - 12 8 (3,-3) --4

General Algebra II CWS #1 Unit 5

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = _____ at _____$ $F_{min} = ____ at _____$

At (3,10)
$$\implies$$
 F = 3 + 20 = 23

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = _ at _ _$ $F_{min} = _ at _ _$ At (3,10) \implies F = 3 + 20 = 23At (-3,8) \implies F = -3 + 16 = 13

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = _ at _$ $F_{min} = _ at _$ At (3,10) \implies F = 3 + 20 = 23At (-3,8) \implies F = -3 + 16 = 13At (-3,3) \implies F = -3 + 6 = 3

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = ______ at ______$ $<math>F_{min} = _____ at ______$ $At (3,10) \implies F = 3 + 20 = 23$ $At (-3,8) \implies F = -3 + 16 = 13$ $At (-3,3) \implies F = -3 + 6 = 3$ $At (3,-3) \implies F = 3 + -6 = -3$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = _____ at _____$ $<math>F_{min} = ___ at _____$ $At (3,10) \implies F = 3 + 20 = 23$ $At (-3,8) \implies F = -3 + 16 = 13$ $At (-3,3) \implies F = -3 + 6 = 3$ $At (3,-3) \implies F = 3 + -6 = -3$

At $(12.75, 3.5) \implies F = 12.75 + 7 = 19.75$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = 23$ at (3,10) $F_{min} =$ at ______ At (3,10) \implies F = 3 + 20 = 23At (-3,8) \implies F = -3 + 16 = 13At (-3,3) \implies F = -3 + 6 = 3At (3,-3) \implies F = 3 + -6 = -3

At $(12.75, 3.5) \implies F = 12.75 + 7 = 19.75$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

5. F = x + 2y $F_{max} = 23$ at (3,10) $F_{min} = -3$ at (3,-3) At (3,10) \implies F = 3 + 20 = 23At (-3,8) \implies F = -3 + 16 = 13At (-3,3) \implies F = -3 + 6 = 3At (3,-3) \implies F = 3 + -6 = -3

At (12.75,3.5) \implies F = 12.75 + 7 = **19.75**

小У - 12 (3,10) (-3,8) (12.75,3.5) (-3,3)Х \rightarrow ÷ - 12 8 -4 (3,-3) --4

General Algebra II CWS #1 Unit 5

The **maximum** and the **minimum** values of F will occur at a vertex of the region.
小У - 12 (3,10) (-3,8) (12.75,3.5) (-3,3) $\stackrel{\mathrm{x}}{\rightarrow}$ 4 - 12 8 -4 (3,-3) --4

General Algebra II CWS #1 Unit 5

6.
$$F = 3x \text{ ó } 5y$$

 $F_{max} = _ at _$
 $F_{min} = _ at _$

At (3,10)
$$\implies$$
 F = 9 ó 50 = -41

6.
$$F = 3x \circ 5y$$

 $F_{max} = _ at _$
 $F_{min} = _ at _$
At (3,10) \implies $F = 9 \circ 50 = -41$
At (-3,8) \implies $F = -9 \circ 40 = -49$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

6. $F = 3x \circ 5y$ $F_{max} = _ at _$ $F_{min} = _ at _$ At (3,10) \implies $F = 9 \circ 50 = -41$ At (-3,8) \implies $F = -9 \circ 40 = -49$ At (-3,3) \implies $F = -9 \circ 15 = -24$ At (3,-3) \implies $F = 9 \circ -15 = 24$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

At (12.75,3.5) \implies F = 38.25 ó 17.5 = **20.75**

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

At (12.75,3.5) \implies F = 38.25 ó 17.5 = **20.75**

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

6. $F = 3x \circ 5y$ $F_{max} = \underline{24}$ at $\underline{(3,-3)}$ $F_{min} = \underline{-49}$ at $\underline{(-3,8)}$ At (3,10) \implies $F = 9 \circ 50 = -41$ At (-3,8) \implies $F = -9 \circ 40 = -49$ At (-3,3) \implies $F = -9 \circ 15 = -24$ At (3,-3) \implies $F = 9 \circ -15 = 24$

At (12.75,3.5) \implies F = 38.25 ó 17.5 = **20.75**

小У - 12 (3,10) (-3,8) (12.75,3.5) (-3,3)Х \rightarrow ÷ - 12 8 -4 (3,-3) --4

General Algebra II CWS #1 Unit 5

7.
$$F = 3x + y$$

 $F_{max} = _$ at _____
 $F_{min} = _$ at _____

小У - 12 (3,10) (-3,8) (12.75,3.5) (-3,3) $\stackrel{x}{\rightarrow}$ 4 - 12 8 -4 (3,-3) --4

General Algebra II CWS #1 Unit 5

7.
$$F = 3x + y$$

 $F_{max} = _$ at _____
 $F_{min} = _$ at _____

At (3,10)
$$\implies$$
 F = 9 + 10 = **19**

7.
$$F = 3x + y$$

 $F_{max} = _____ at _____
 $F_{min} = ____ at _____
At (3,10) \implies F = 9 + 10 = 19$
 $At (-3,8) \implies F = -9 + 8 = -1$$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

7. F = 3x + y $F_{max} = _$ at $_$ $F_{min} = _$ at $_$ At (3,10) \implies F = 9 + 10 = 19At (-3,8) \implies F = -9 + 8 = -1At (-3,3) \implies F = -9 + 3 = -6

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

7. F = 3x + y $F_{max} = _____ at _____$ $<math>F_{min} = ____ at _____$ $At (3,10) \implies F = 9 + 10 = 19$ $At (-3,8) \implies F = -9 + 8 = -1$ $At (-3,3) \implies F = -9 + 3 = -6$ $At (3,-3) \implies F = 9 + -3 = 6$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

At $(12.75, 3.5) \implies F = 38.25 + 3.5 = 41.75$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

7. F = 3x + y $F_{max} = 41.75$ at (12.75,3.5) $F_{min} =$ at ______ At (3,10) \implies F = 9 + 10 = 19At (-3,8) \implies F = -9 + 8 = -1At (-3,3) \implies F = -9 + 3 = -6At (3,-3) \implies F = 9 + -3 = 6

At $(12.75, 3.5) \implies F = 38.25 + 3.5 = 41.75$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

7. F = 3x + y $F_{max} = 41.75$ at (12.75,3.5) $F_{min} = -6$ at (-3,3) At (3,10) \implies F = 9 + 10 = 19At (-3,8) \implies F = -9 + 8 = -1At (-3,3) \implies F = -9 + 3 = -6At (3,-3) \implies F = 9 + -3 = 6

At $(12.75, 3.5) \implies F = 38.25 + 3.5 = 41.75$

8.
$$F = 4x \circ 2y$$

 $F_{max} = _____ at _____$
 $F_{min} = ____ at _____$

小У - 12 (3,10) (-3,8) (12.75,3.5) (-3,3) $\stackrel{x}{\rightarrow}$ 4 - 12 8 -4 (3,-3) --4

General Algebra II CWS #1 Unit 5

8.
$$F = 4x \text{ ó } 2y$$

 $F_{max} = _ at _$
 $F_{min} = _ at _$

At (3,10)
$$\implies$$
 F = 12 ó 20 = -8

8.
$$F = 4x \circ 2y$$

 $F_{max} = ____ at _______ at []_____ At (3,10) \implies F = 12 \circ 20 = -8$
 $At (-3,8) \implies F = -12 \circ 16 = -28$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

8. $F = 4x \circ 2y$ $F_{max} = ______ at _____$ $<math>F_{min} = ____ at _____$ $At (3,10) \implies F = 12 \circ 20 = -8$ $At (-3,8) \implies F = -12 \circ 16 = -28$ $At (-3,3) \implies F = -12 \circ 6 = -18$ $At (3,-3) \implies F = 12 \circ -6 = 18$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

8. $F = 4x \circ 2y$ $F_{max} = ______ at ______ at ______ f_{min} = _____ at ______ at ______ at ______ at [...] f_{min} = _____ at [...] f_{min} = _____ at [...] f_{min} = ____ at [...] f_{min} = _____ at [...] f_{min} = ______ at [...] f_{min} = _______ at [...] f_{min} = _______ at [...] f_{min} = ______ at [...] f_{min} = _______ at [...] f_{min} = ________ at [...] f_{min} = _________ at [...] f_{min} = ________ at [...] f_{min} = _________ at [...] f_{min} = ________ at [...] f_{min}$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

8. $F = 4x \circ 2y$ $F_{max} = 44$ at (12.75,3.5) $F_{min} = 12 \circ 20 = -8$ At (3,10) \implies $F = 12 \circ 20 = -8$ At (-3,8) \implies $F = -12 \circ 16 = -28$ At (-3,3) \implies $F = -12 \circ 6 = -18$ At (3,-3) \implies $F = 12 \circ -6 = 18$ At (12.75,3.5) \implies $F = 51 \circ 7 = 44$

The **maximum** and the **minimum** values of F will occur at a vertex of the region.

8. $F = 4x \circ 2y$ $F_{max} = 44$ at (12.75,3.5) $F_{min} = -28$ at (-3,8) At (3,10) \implies $F = 12 \circ 20 = -8$ At (-3,8) \implies $F = -12 \circ 16 = -28$ At (-3,3) \implies $F = -12 \circ 6 = -18$ At (3,-3) \implies $F = 12 \circ -6 = 18$

At $(12.75, 3.5) \implies F = 51 \text{ ó } 7 = 44$

At $(12.75, 3.5) \implies F = 51 \text{ ó } 7 = 44$