General Algebra II

Lesson \#1 Unit 4

Class Worksheet \#1

For Worksheets \#1 \& \#2

General Algebra II Two Variable Linear Inequalities

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points óaboveôthe line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áaboveôthe line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points Óelowôthe line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Of course the points on the line make the equation true.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Of course the points on the line make the equation true.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Of course the points on the line make the equation true. This lesson is concerned with the other two sets of points.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point (2, 1).

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point (2, 1).

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $x=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $\mathrm{x}=2$ above the point $(2,1)$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $\mathrm{x}=2$ above the point $(2,1)$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $\mathrm{x}=2$ above the point $(2,1)$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $x=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x - 3}$ has not changed.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above $(2,1)$ on the line $x=2$,

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $x=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above (2,1) on the line $x=2, \mathbf{y}>\mathbf{2 x}-\mathbf{3}$!!

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $x=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above $(\mathbf{2}, \mathbf{1})$ on the line $\mathrm{x}=2, \mathbf{y}>\mathbf{2 x}-\mathbf{3}$!! Clearly, what was true for the vertical line $x=2$ would have been true for any vertical line.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above $(2,1)$ on the line $x=2, \mathbf{y}>\mathbf{2 x}-\mathbf{3}$!! Clearly, what was true for the vertical line $x=2$ would have been true for any vertical line. Therefore, $\mathbf{y}>2 \mathrm{x}-\mathbf{3}$ at any point above the line $\mathrm{y}=2 \mathrm{x}-\mathbf{3}$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $x=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above $(2,1)$ on the line $x=2, \mathbf{y}>\mathbf{2 x}-\mathbf{3}$!! Clearly, what was true for the vertical line $x=2$ would have been true for any vertical line. Therefore, $\mathbf{y}>2 \mathrm{x}-\mathbf{3}$ at any point above the line $\mathbf{y}=2 \mathrm{x}-\mathbf{3}$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above $(2,1)$ on the line $x=2, \mathbf{y}>\mathbf{2 x}-\mathbf{3}$!! Clearly, what was true for the vertical line $x=2$ would have been true for any vertical line. Therefore, $\mathbf{y}>2 \mathrm{x}-3$ at any point above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$. In the same way, it can be shown that $\mathbf{y}<2 \mathrm{x}-3$ at any point below the line.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

Consider the vertical line $\mathrm{x}=2$. This line intersects the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$ at the point $(2,1)$. Of course, the equation is true at this point. Consider any point on the line $x=2$ above the point $(2,1)$. The value of x has not changed. Therefore, the value of $\mathbf{2 x}-\mathbf{3}$ has not changed. However, the value of y has increased. Therefore, at any point above $(2,1)$ on the line $x=2, \mathbf{y}>\mathbf{2 x}-\mathbf{3}$!! Clearly, what was true for the vertical line $x=2$ would have been true for any vertical line. Therefore, $\mathbf{y}>2 \mathrm{x}-3$ at any point above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$. In the same way, it can be shown that $\mathbf{y}<2 \mathrm{x}-3$ at any point below the line.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óelowôthe line

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x - 3}$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x - 3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points óselowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
These inequalities involve the points below the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points đ́elowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
These inequalities involve the points below the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.

General Algebra II Two Variable Linear Inequalities

Consider the equation $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
The graph of this equation divides the plane into 3 distinct sets of points.
(a) the points on the line
(b) the points áboveôthe line
(c) the points đ́elowôthe line

Consider the 4 inequalities below.

$$
y>2 x-3 \quad y \geq 2 x-3 \quad y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x - 3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
These inequalities involve the points below the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.

General Algebra II Two Variable Linear Inequalities

$$
y>2 x-3 \quad y \geq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.

General Algebra II Two Variable Linear Inequalities

$$
y>2 x-3 \quad y \geq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

General Algebra II Two Variable Linear Inequalities

$$
y>2 x-3 \quad y \geq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq 2 x-3$ does include the points on the line.
Consider these graphs.

General Algebra II Two Variable Linear Inequalities

$$
y>2 x-3 \quad y \geq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

The ólashed lineôindicates the points on the line are not included in the graph.

General Algebra II Two Variable Linear Inequalities

$$
y>2 x-3 \quad y \geq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>2 \mathbf{x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq 2 x-3$ does include the points on the line.
Consider these graphs.

The ólashed lineôindicates the points on the line are not included in the graph.

General Algebra II Two Variable Linear Inequalities

$$
y>2 x-3 \quad y \geq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}>2 \mathbf{x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \geq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

The ólashed lineôindicates the points on the line are not included in the graph.

The óolid lineôindicates the points on the line are included in the graph.

General Algebra II Two Variable Linear Inequalities

$$
y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.

General Algebra II Two Variable Linear Inequalities

$$
y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq 2 \mathbf{x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

General Algebra II Two Variable Linear Inequalities

$$
y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

General Algebra II Two Variable Linear Inequalities

$$
y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

The ólashed lineôindicates the points on the line are not included in the graph.

General Algebra II Two Variable Linear Inequalities

$$
y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

The ólashed lineôindicates the points on the line are not included in the graph.

General Algebra II Two Variable Linear Inequalities

$$
y<2 x-3 \quad y \leq 2 x-3
$$

These inequalities involve the points above the line $\mathbf{y}=\mathbf{2 x}-\mathbf{3}$.
$\mathbf{y}<\mathbf{2 x}-\mathbf{3}$ does not include the points on the line.
$\mathbf{y} \leq \mathbf{2 x}-\mathbf{3}$ does include the points on the line.
Consider these graphs.

The ólashed lineôindicates the points on the line are not included in the graph.

The óolid lineôindicates the points on the line are included in the graph.

General Algebra II Two Variable Linear Inequalities

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$,

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.

$$
\mathbf{y}>\mathbf{m x}+\mathbf{b}
$$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.

$$
\mathbf{y}>\mathbf{m x}+\mathbf{b} \quad \mathbf{y} \geq \mathbf{m x}+\mathbf{b}
$$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.

$$
\mathbf{y}>\mathbf{m x}+\mathbf{b} \quad \mathbf{y} \geq \mathbf{m x}+\mathbf{b} \quad \mathbf{y}<\mathbf{m x}+\mathbf{b}
$$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.

$$
\mathbf{y}>\mathbf{m x}+\mathbf{b} \quad \mathbf{y} \geq \mathbf{m x}+\mathbf{b} \quad \mathbf{y}<\mathbf{m x}+\mathbf{b} \quad \mathbf{y} \leq \mathbf{m x}+\mathbf{b}
$$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this.

$$
\mathbf{y}>\mathbf{m x}+\mathbf{b} \quad \mathbf{y} \geq \mathbf{m x}+\mathbf{b} \quad \mathbf{y}<\mathbf{m} \mathbf{x}+\mathbf{b} \quad \mathbf{y} \leq \mathbf{m x}+\mathbf{b}
$$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this.

$\mathbf{y} \leq \mathbf{m x}+\mathbf{b}$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this.

$\mathbf{y}<\mathbf{m x}+\mathbf{b}$
$\mathbf{y} \leq \mathbf{m x}+\mathbf{b}$

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line.

solid boundary
Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary

$\mathbf{y} \leq \mathbf{m x}+\mathbf{b}$

solid boundary
Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary
Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line. Shade above the line.

solid boundary

dashed boundary
Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary
$\mathbf{y} \geq \mathbf{m x}+\mathbf{b}$

solid boundary

dashed boundary

Shade above the line. Shade above the line. Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

solid boundary

Shade above the line. Shade above the line.
Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line. Shade above the line.

solid boundary

dashed boundary
Shade below the line.

solid boundary

General Algebra II Two Variable Linear Inequalities

Given any oblique line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ is the óoundary lineôin each case.

dashed boundary
$\mathbf{y} \geq \mathbf{m x}+\mathbf{b}$

solid boundary

dashed boundary

solid boundary

Shade above the line. Shade above the line. Shade below the line.

General Algebra II Two Variable Linear Inequalities

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$,

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{y}>k
$$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.

$$
y>k \quad y \geq k
$$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{y}>\mathbf{k} \quad \mathbf{y} \geq \mathbf{k} \quad \mathbf{y}<\mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{y}>\mathbf{k} \quad \mathbf{y} \geq \mathbf{k} \quad \mathbf{y}<\mathbf{k} \quad \mathbf{y} \leq \mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.
$\mathrm{y}>\mathrm{k}$
$\mathrm{y} \geq \mathrm{k}$
$\mathrm{y}<\mathrm{k}$
$\mathrm{y} \leq \mathrm{k}$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

$\mathbf{y}<\mathbf{k}$
$\mathbf{y} \leq \mathbf{k}$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

$$
\mathbf{y}<\mathrm{k} \quad \mathrm{y} \leq \mathrm{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary
Shade above the line.

solid boundary
Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade above the line. Shade above the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the đ́oundary lineôin each case.

dashed boundary
Shade above the line. Shade above the line.

solid boundary

dashed boundary
Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary
Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade above the line. Shade above the line.

dashed boundary

Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

solid boundary

Shade above the line. Shade above the line.
Shade below the line.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any horizontal line $\mathbf{y}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{y}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

Shade above the line. Shade above the line. Shade below the line.

solid boundary

Shade below the line.

General Algebra II Two Variable Linear Inequalities

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$,

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{x}>\mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{x}>\mathbf{k} \quad \mathbf{x} \geq \mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{x}>\mathbf{k} \quad \mathbf{x} \geq \mathbf{k} \quad \mathbf{x}<\mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.

$$
\mathbf{x}>\mathbf{k} \quad \mathbf{x} \geq \mathbf{k} \quad \mathbf{x}<\mathbf{k} \quad \mathbf{x} \leq \mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

$$
\mathbf{x}>\mathbf{k} \quad \mathbf{x} \geq \mathbf{k} \quad \mathbf{x}<\mathbf{k} \quad \mathbf{x} \leq \mathbf{k}
$$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

$$
x>k \quad x \geq k
$$

$\mathbf{x}<\mathbf{k}$
$\mathbf{x} \leq \mathbf{k}$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

$\mathbf{x}<\mathbf{k}$
$\mathrm{x} \leq \mathrm{k}$

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary
Shade right of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary
Shade right of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade right of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

Shade right of the line. Shade right of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade right of the line. Shade right of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade right of the line. Shade right of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade right of the line. Shade right of the line.

dashed boundary

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade right of the line. Shade right of the line.

dashed boundary
Shade left of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

Shade right of the line. Shade right of the line. Shade left of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

Shade right of the line. Shade right of the line.

dashed boundary
hade left of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

solid boundary

Shade right of the line. Shade right of the line. Shade left of the line.

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

Shade right of the line. Shade right of the line. Shade left of the line.

solid boundary

General Algebra II Two Variable Linear Inequalities

Given any vertical line $\mathbf{x}=\mathbf{k}$, there are 4 related inequalities.
Their graphs look like this. The line $\mathbf{x}=\mathbf{k}$ is the óoundary lineôin each case.

dashed boundary

solid boundary

dashed boundary

solid boundary

Shade right of the line. Shade right of the line.
Shade left of the line.

General Algebra II CWS \#1 Unit 4

General Algebra II CWS \#1 Unit 4

Graph each of the following.

1. $\mathrm{y}<2 \mathrm{x}-3$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

1. $\mathrm{y}<2 \mathrm{x}-3$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.

The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.
The boundary line is a dashed line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.
The boundary line is a dashed line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 1. } y<2 x-3
$$

The boundary line is the oblique line $y=2 x-3$.
The boundary line is a dashed line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
2. $y \leq-2 x+2$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
2. $y \leq-2 x+2$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.
The boundary line is a solid line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.

The boundary line is a solid line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 2. } y \leq-2 x+2
$$

The boundary line is the oblique line $y=-2 x+2$.

The boundary line is a solid line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
3. $y>\frac{2}{3} x+3$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
3. $y>\frac{2}{3} x+3$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line. Shade above the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line. Shade above the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 3. } y>\frac{2}{3} x+3
$$

The boundary line is the oblique line $y=(2 / 3) x+3$.
The boundary line is a dashed line. Shade above the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
4. $y \geq \frac{-2}{5} x-1$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
4. $y \geq \frac{-2}{5} x-1$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
4. $y \geq \frac{-2}{5} x-1$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
4. $y \geq \frac{-2}{5} x-1$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
4. $y \geq \frac{-2}{5} x-1$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.
The boundary line is a solid line. Shade above the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

The boundary line is a solid line. Shade above the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 4. } y \geq \frac{-2}{5} x-1
$$

The boundary line is the oblique line $y=(-2 / 5) x-1$.

The boundary line is a solid line. Shade above the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
5. $\mathrm{y}<3$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
5. $\mathrm{y}<3$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.

The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.
The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.

The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.
The boundary line is a dashed line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.
The boundary line is a dashed line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.
The boundary line is a dashed line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 5. } y<3
$$

The boundary line is the horizontal line $y=3$.
The boundary line is a dashed line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.
The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
6. $x \geq-2$

The boundary line is the vertical line $x=-2$.
The boundary line is a solid line. Shade to the right of the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 6. } x \geq-2
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line. Shade to the right of the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 6. } x \geq-2
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line. Shade to the right of the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
7. $\mathrm{y} \leq 2 \mathrm{x}$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
7. $\mathrm{y} \leq 2 \mathrm{x}$

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.

The boundary line is a solid line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.
The boundary line is a solid line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.
The boundary line is a solid line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 7. } y \leq 2 x
$$

The boundary line is the oblique line $y=2 x$.
The boundary line is a solid line. Shade below the line.

Step 1: Graph several points on the boundary line.
Step 2: Draw the boundary line.
Step 3: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

5y

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$
$5 y>$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
5 y>-3 x
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$
$5 y>-3 x+$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
5 y>-3 x+10
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
5 y>-3 x+10
$$

y

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line. Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line. Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
8. $3 x+5 y>10$

$$
\begin{aligned}
& 5 y>-3 x+10 \\
& y>\frac{-3}{5} x+2
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{-3}{5} x+2$.

The boundary line is a dashed line. Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$
$2 y$

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
2 \mathrm{y} \leq
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\mathbf{2 y} \leq 5 x
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\mathbf{2 y} \leq 5 x+
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
2 y \leq 5 x+10
$$

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$
$2 \mathrm{y} \leq 5 \mathrm{x}+10$
y

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 9. }-5 x+2 y \leq 10 \\
& 2 y \leq 5 x+10 \\
& y \leq
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 9. }-5 x+2 y \leq 10
$$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 9. }-5 x+2 y \leq 10
$$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 9. }-5 x+2 y \leq 10 \\
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 9. }-5 x+2 y \leq 10
$$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 9. }-5 x+2 y \leq 10
$$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 9. }-5 x+2 y \leq 10
$$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.
The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-\mathbf{5 x}+2 \mathrm{y} \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.
The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-\mathbf{5 x}+2 \mathrm{y} \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.
The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
9. $-5 x+2 y \leq 10$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

The boundary line is a solid line.
Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 9. }-5 x+2 y \leq 10 \\
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

The boundary line is a solid line.
Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 9. }-5 x+2 y \leq 10
$$

$$
\begin{aligned}
& 2 y \leq 5 x+10 \\
& y \leq \frac{5}{2} x+5
\end{aligned}
$$

The boundary line is the oblique line $y=\frac{5}{2} x+5$.

The boundary line is a solid line.
Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
10. $3 x-y>-4$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
10. $3 x-y>-4$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
10. $3 x-y>-4$
$-y>$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y>-3 x
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y>-3 x-
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y>-3 x-4
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y>-3 x-4
\end{aligned}
$$

$$
\mathbf{y}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y>-3 x-4 \\
& y<
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 10. } 3 x-y>-4 \\
& -y>-3 x-4 \\
& y<3 x
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
& -y>-3 x-4 \\
& y<3 x+
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
3 x-y & >-4 \\
-y & >-3 x-4 \\
y & <3 x+4
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line. Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line. Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 10. } \begin{aligned}
& 3 x-y>-4 \\
&-y>-3 x-4 \\
& y<3 x+4
\end{aligned}
$$

The boundary line is the oblique line $y=3 x+4$.

The boundary line is a dashed line. Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \mathbf{x}-\mathrm{y}<0
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \mathrm{x}-\mathrm{y}<0
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \mathbf{x}-\mathrm{y}<0
$$

-y

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 11. } \mathrm{x}-\mathrm{y}<0 \\
& -\mathrm{y}<
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \mathrm{x}-\mathrm{y}<0
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\begin{aligned}
& \text { 11. } x-y<0 \\
& -y<-x \\
& y
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for $\mathbf{x .)}$
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>x
\end{aligned}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>x
\end{aligned}
$$

The boundary line is the oblique line $y=x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>x
\end{aligned}
$$

The boundary line is the oblique line $y=x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>x
\end{aligned}
$$

The boundary line is the oblique line $y=x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>x
\end{aligned}
$$

The boundary line is the oblique line $y=x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line. Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{gathered}
x-y<0 \\
-y<-x \\
y>x
\end{gathered}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line. Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 11. } \begin{aligned}
& x-y<0 \\
& -y<-x \\
& y>x
\end{aligned}
$$

The boundary line is the oblique line $\mathbf{y}=\mathbf{x}$.

The boundary line is a dashed line. Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

5x

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
5 x \geq
$$

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
5 x \geq-10
$$

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$
$5 x \geq-10$
\mathbf{x}

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
\begin{gathered}
5 x \geq-10 \\
x \geq
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
\begin{gathered}
5 x \geq-10 \\
x \geq-2
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
\begin{gathered}
5 x \geq-10 \\
x \geq-2
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
\begin{gathered}
5 x \geq-10 \\
x \geq-2
\end{gathered}
$$

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.
12. $5 x+10 \geq 0$

$$
\begin{gathered}
5 x \geq-10 \\
x \geq-2
\end{gathered}
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.
Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.
Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for \mathbf{x}.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical line $x=-2$.

The boundary line is a solid line.
Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

General Algebra II CWS \#1 Unit 4

Graph each of the following.

$$
\text { 12. } 5 x+10 \geq 0
$$

The boundary line is the vertical

Good luck on worksheet \#1.

Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

