General Algebra 2 Lesson #4 Unit 3 Class Worksheet #4 For Worksheets #5 - #8

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x + x + y = x + y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20

second: y x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20

second: y = x =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20

second: y x = 3y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x x + y = 20$$

second:
$$y x = 3y -$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x x + y = 20$$

second:
$$y x = 3y - 4$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x = x + y = 20 (3y - 4)

second: y x = 3y - 4

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x x + y = 20 (3y - 4) +$$

second:
$$y x = 3y - 4$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x + y = 20$$
 $(3y - 4) + y$

second:
$$y x = 3y - 4$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x x + y = 20 (3y - 4) + y =$$

second:
$$y x = 3y - 4$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x x + y = 20 (3y - 4) + y = 20$$

second:
$$y x = 3y - 4$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x x + y = 20 (3y - 4) + y = 20$$

second:
$$y x = 3y - 4$$
 4y

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x x + y = 20 (3y - 4) + y = 20$$

second: $y x = 3y - 4 4y - 4$

$$x = 3y - 4$$

$$4y-4$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

$$x + y = 20$$

first:
$$x x + y = 20 (3y - 4) + y = 20$$

$$x = 3y - 4$$

second:
$$y x = 3y - 4 4y - 4 = 20$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$
second: y $x = 3y - 4$ $4y - 4 = 20$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$
second: y $x = 3y - 4$ $4y - 4 = 20$
 $4y = 4$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$
second: y $x = 3y - 4$ $4y - 4 = 20$
 $4y = 24$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$
second: y $x = 3y - 4$ $4y - 4 = 20$
 $4y = 24$
 $y = 24$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$
second: y $x = 3y - 4$ $4y - 4 = 20$
 $4y = 24$
 $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $4y=24$ $y=6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $x = 4y=24$ $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)$ $4y = 24$ $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$ $4y = 24$ $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$ $4y = 24$ $x = y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$
second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$
 $4y = 24$ $x = 18$
 $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$
second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$
 $4y = 24$ $x = 18-4$
 $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$
second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$
 $4y = 24$ $x = 18-4$
 $y = 6$ $x = 3$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$
second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$
 $4y = 24$ $x = 18-4$
 $y = 6$ $x = 14$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$ $4y = 24$ $x = 18-4$ $y = 6$ $x = 14$

The first number is 14,

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x
$$x + y = 20$$
 $(3y-4) + y = 20$ $x = 3y-4$ second: y $x = 3y-4$ $4y-4=20$ $x = 3(6)-4$ $4y = 24$ $x = 18-4$ $y = 6$ $x = 14$

The first number is 14, and the second number is 6.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x + x + y = x + y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15

second: y x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15

second: y x –

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15

second: y x - y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15

second: y x - y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x x + y = 15$$

second:
$$y x - y = 9$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x x + y = 15$$

second:
$$y x - y = 9$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x$$
 $x + y = 15$
second: y $x - y = 9$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x$$
 $x + y = 15$
second: y $x - y = 9$
 $2x =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$

second: y $x - y = 9$
 $2x = 24$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$

second: y $x - y = 9$
 $2x = 24$
 $x = 24$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$

second: y $x - y = 9$
 $2x = 24$
 $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first:
$$x$$
 $x + y = 15$ $x + y = 15$ second: y $x - y = 9$ $2x = 24$ $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$
 $x + y = 15$
second: y $x - y = 9$ 12
 $2x = 24$
 $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$
 $x + y = 15$
second: y $x - y = 9$ $12 + y$
 $2x = 24$
 $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$
 $x + y = 15$
second: y $x - y = 9$ $12 + y = 15$
 $2x = 24$
 $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$
 $x + y = 15$
second: y $x - y = 9$ $12 + y = 15$
 $2x = 24$ $y = 15$
 $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 15$$
 $x + y = 15$ second: y $x - y = 9$ $12 + y = 15$ $y = 3$ $x = 12$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x
$$x + y = 15$$
 $x + y = 15$ second: y $x - y = 9$ $12 + y = 15$ $y = 3$ $x = 12$

The numbers are 12 and 3.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:

nickels:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

dimes:

nickels:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

dimes: x

nickels:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

dimes: x

nickels: y

total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number X of coins

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number x + of coins

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number	$\mathbf{x} + \mathbf{x}$
of coins	•

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

x + y =

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

$$x + y = 40$$

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number Value of of coins the coins

x + y = 40

dimes: x

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number	Value of	
of coins	the coins	

$$x + y = 40$$

dimes: x 10x¢

nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	x + y = 40
dimes:	X	$10x\phi$	
nickels:	<u>y</u>	5y¢	
total	40		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	x + y = 40
dimes:	X	$10x\phi$	
nickels:	y	5y¢	
total	40		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	x + y = 40
dimes:	X	$10x\phi$	
nickels:	y	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	x + y = 40
dimes:	X	$10x\phi$	10x
nickels:	y	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	x + y = 40
dimes:	X	$10x\phi$	10x +
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	11071110 01	Value of the coins	x + y = 40
dimes:	X	$10x\phi$	10x + 5y
nickels:	y	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	x + y = 40
dimes:	X	$10x\phi$	10x + 5y =
nickels:	y	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	11001110 01	Value of the coins	X -
dimes:	X	10x¢	10x +
nickels:	y	5y¢	
total	40	320¢	

$$x + y = 40$$
$$10x + 5y = 320$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	11071110 01	Value of	
	of coins	the coins	
dimes:	X	$10x\phi$	
nickels:	у	5y¢	
total	40	320¢	

$$x + y = 40$$

$$10x + 5y = 320$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins
dimes:	X	$10x\phi$
nickels:	y	5y¢
total	40	320¢

$$x + y = 40 \xrightarrow{-5} -5x$$

$$10x + 5y = 320$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	$10x\phi$
nickels:	y	5y¢
total	40	320¢

$$x + y = 40$$
 -5 -5x - $10x + 5y = 320$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins
dimes:	X	$10x\phi$
nickels:	y	5y¢
total	40	320¢

$$x + y = 40$$
 $-5x - 5y$
 $10x + 5y = 320$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	11071110 01	Value of
	of coins	the coins
dimes:	X	$10x\phi$
nickels:	у	5y¢
total	40	320¢

$$x + y = 40$$
 $-5x - 5y = 10x + 5y = 320$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number	Value of
	of coins	the coins
dimes:	X	10x¢
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 -5 $-5x - 5y = -200$
 $10x + 5y = 320$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number	Value of
	of coins	the coins
dimes:	X	10x¢
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 -5 $-5x - 5y = -200$
 $10x + 5y = 320$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number	Value of
	of coins	the coins
dimes:	X	10x¢
nickels:	y	5y¢
total	40	320¢

$$x + y = 40 \longrightarrow -5x - 5y = -200$$

$$10x + 5y = 320 \longrightarrow 10x$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number	Value of
	of coins	the coins
dimes:	X	10x¢
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ \longrightarrow $10x +$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	$10x\phi$
nickels:	y	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ \longrightarrow $10x + 5y$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	$10x\phi$
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ \longrightarrow $10x + 5y =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	$10x\phi$
nickels:	y	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	10x¢
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	$10x\phi$
nickels:	у	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ $\xrightarrow{5x}$ $5x$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	$10x\phi$
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$
 $5x =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of
	of coins	the coins
dimes:	X	$10x\phi$
nickels:	У	5y¢
total	40	320¢

$$x + y = 40$$
 $\xrightarrow{-5}$ $-5x - 5y = -200$
 $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$
 $5x = 120$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins $10x\phi$	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
nickels:		5y¢	5x = 120
total	40	320¢	${f X}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
dimes:	X	$10x\phi$	10x + 5y = 320
nickels:	y	5y¢	5x = 120
total	40	320¢	$\mathbf{x} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins $10x\phi$	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$
nickels:		5y¢	5x = 120 $x = 24$
total	40	320¢	$\mathbf{x} - 24$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
dimes:	X	10x¢	$\frac{10x + 3y - 320}{}$
nickels:	y	5y¢	5x = 120
total	40	320¢	x = 24 $x + y = 40$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$
nickels:		_ ′	5x = 120
mckcis.	<u>y</u>	5y¢	$\mathbf{x} = 24$
total	40	320¢	x + y = 40
			24

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
			5x = 120
nickels:	<u>y</u>	5y¢	$\mathbf{x} = 24$
total	40	320¢	x - 24 $x + y = 40$
			24 + y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$
		_ ,	5x = 120
nickels:	<u>y</u>	5y¢	x = 24
total	40	320¢	x + y = 40
			24 + y = 40

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins $10x\phi$	x + y = 40 -5 $-5x - 5y = -20010x + 5y = 320$ $10x + 5y = 320$
			5x = 120
nickels:	<u>y</u>	5y¢	x = 24
total	40	320¢	x - 24 $x + y = 40$
			24 + y = 40
			$\mathbf{y} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins $10x \not c$	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ $\xrightarrow{10x + 5y = 320}$
nickels:	У	5y¢	5x = 120
total	40	320¢	x = 24 $x + y = 40$
			24 + y = 40
			y = 16

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins $10x\phi$	$x + y = 40 \xrightarrow{-5} -10$ $10x + 5y = 320 \xrightarrow{-10} 10$	
nickels:		5y¢		5x = 120
total	40	320¢		$\mathbf{x} = 24$ $\mathbf{x} + \mathbf{y} = 40$
	T	here are	24 dimes and 16 nickels.	24 + y = 40
				y = 16

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes:

quarters:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins

dimes:

quarters:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins

dimes: x

quarters:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins

dimes: x

quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number Value of of coins the coins

dimes: x

quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number Value of of coins the coins

dimes: $x = 10x\phi$

quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number Value of of coins the coins

dimes: $x = 10x\phi$

quarters: y 25y¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number Value of of coins the coins

dimes: $x = 10x\phi$

quarters: y 25y¢

total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins
dimes:	X	$10x\phi$
quarters:	У	25y¢
total		800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

10x

number of value of the coins the coins dimes: x = 10x / c quarters: y = 25y / c total 800 / c

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

10x +

number of value of the coins dimes: x = 10x c quarters: y = 25y c total 800 c

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: $x 10x\phi$

quarters: y 25y¢ total 800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

$$10x + 25y =$$

number of coins the coins the coins dimes: x = 10x / c quarters: y = 25y / c total 800 / c

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

$$10x + 25y = 800$$

number of coins the coins the coins dimes: x = 10x / c quarters: y = 25y / c total 800 / c

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	11071110 01	Value of the coins	
dimes:	X	10x¢	
quarters:	У	25y¢	
total		800¢	

$$10x + 25y = 800$$
$$x$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of value of the coins the coins the coins the coins the coins the coins
$$x = 10x / c$$
 quarters: $y = 25y / c$ total $800 / c$

$$10x + 25y = 800$$
$$x =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	Value of the coins
dimes:	X	10x¢
quarters:	У	25y¢
total		800¢

$$10x + 25y = 800$$
$$x = 2y$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins
dimes:	X	$10x\phi$
quarters:	У	25y¢
total		800¢

$$10x + 25y = 800$$
$$x = 2y -$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins
dimes:	X	$10x\phi$
quarters:	У	25y¢
total		800¢

$$10x + 25y = 800$$
$$x = 2y - 1$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	of coins	Value of the coins $10x \phi$	10x + 25y = 800 $x = 2y - 1$ $10($
quarters:	у	25y¢	10(
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	10x + 25y = 800 $x = 2y - 1$
dimes:		10x¢	10(2y-1)
quarters:	У	25y¢	10(-3 1)
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	10x + 25y = 800 $x = 2y - 1$
dimes:	X	$10x\phi$	10(2y-1) +
quarters:	У	25y¢	10(2y 1)
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	10x + 25y = 800 $x = 2y - 1$
dimes:	X	$10x\phi$	10(2y-1) + 25y
quarters:	У	25y¢	10(23 1) 233
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			1	
	number	Value of		
	of coins	the coins		
dimes:	X	$10x\phi$	10(2y	7
quarters:	У	25y¢	10(-)	
total		800¢		

$$10x + 25y = 800$$
$$x = 2y - 1$$
$$10(2y - 1) + 25y =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number	Value of	10x + 25y = 800
		the coins	x = 2y - 1
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	1	X	10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y
total		800¢	20 y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number	Value of	10x + 25y = 800
		the coins	x = 2y - 1
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y –
total		800¢	20 y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		Value of the coins	10x + 25y = 800 $x = 2y - 1$
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10
total		800¢	20y - 10

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	_		10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 +
total		800¢	20 y 10 '

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y
total		800¢	20y 10 23y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y = 800
total		800¢	20y 10 1 25y 000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y = 800
total		800¢	
			45y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y = 800
total		800¢	
			45y —

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y = 800
total		800¢	
			45y - 10

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y = 800
total		800¢	
			45y - 10 = 800

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number Value of of coins the coins
$$x = 2y - 1$$
dimes:
$$x = 10x \neq 25y \neq 1$$
quarters:
$$y = 25y \neq 1$$

$$total = 800 \neq 10(2y - 1) + 25y = 800$$

$$20y - 10 + 25y = 800$$

$$45y - 10 = 800$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number Value of of coins the coins
$$x = 2y - 1$$
dimes:
$$x = 10x \neq 25y \neq 1$$
quarters:
$$y = 25y \neq 1$$

$$total = 800 \neq 10(2y - 1) + 25y = 800$$

$$20y - 10 + 25y = 800$$

$$45y - 10 = 800$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

45y = 810

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800
quarters:	У	25y¢	20y - 10 + 25y = 800
total		800¢	45y - 10 = 800
			•

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number Value of of coins the coins dimes:
$$x = 10x^{\circ}$$
 quarters: $y = 25y^{\circ}$ total 800°

$$10x + 25y = 800$$

$$x = 2y - 1$$

$$10(2y - 1) + 25y = 800$$

$$20y - 10 + 25y = 800$$

$$45y - 10 = 800$$

$$45y = 810$$

$$y =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

y = 18

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

			10x + 25y = 800
		Value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2y - 1) + 25y = 800
quarters:	y	25y¢	20y - 10 + 25y = 800
total		800¢	45y - 10 = 800
			45x - 910

$$10x + 25y = 800$$

$$x = 2y - 1$$

$$10(2y - 1) + 25y = 800$$

$$20y - 10 + 25y = 800$$

$$45y - 10 = 800$$

$$45y = 810$$

$$y = 18$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

			10x + 25y = 800	
		Value of the coins	x = 2y - 1	
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800	x = 2y - 1
quarters:	У	25y¢	20y - 10 + 25y = 800	x = 2(18) - 1
total		800¢	45y - 10 = 800	• •
			45y = 810	

y = 18

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800	
	number of coins	Value of the coins	x = 2y - 1	
dimes:	X	$10x\phi$	10(2y - 1) + 25y = 800	x = 2y - 1
quarters:	У	25y¢	20y - 10 + 25y = 800	x = 2(18) - 1
total		800¢	45y - 10 = 800	$\mathbf{x} =$
			45y = 810	
			v = 18	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			10x + 25y = 800	
		Value of the coins	x = 2y - 1	
dimes:	X	10x¢	10(2y - 1) + 25y = 800	x = 2y - 1
quarters:	У	25y¢	20y - 10 + 25y = 800	x = 2(18) - 1
total		800¢	45y - 10 = 800	x = 35
			45y = 810	
			y = 18	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

y = 18

number of value of the coins dimes:
$$x = 10x^{\circ}$$
 quarters: $y = 25y^{\circ}$ total 800°

$$10x + 25y = 800$$
 $x = 2y - 1$
 $10(2y - 1) + 25y = 800$ $x = 2y - 1$
 $20y - 10 + 25y = 800$ $x = 2(18) - 1$
 $45y - 10 = 800$ $x = 35$
 $45y = 810$ There are 35 dimes

and 18 quarters.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:

Sue:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

Sue:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x X

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

 \mathbf{x} +

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x + y

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

x + y =

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

x + y = 1000

Sue: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

x + y = 1000

Sue: y

У

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

x + y = 1000

Sue: y

y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

x + y = 1000

Sue: y

y = 4x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

Sue:

T7

total 1000

x + y = 1000

y = 4x +

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: \mathbf{X}

Sue:

1000 total

x + y = 1000

y = 4x + 25

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x + y = 1000

Sue: y = 4x + 25

total 1000

X

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:
$$x$$
 $x + y = 1000$
Sue: y $y = 4x + 25$
total $x + y = 1000$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue:
$$y = 4x + 25$$

total 1000
$$x + (4x + 25)$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x + y = 1000

Sue: y = 4x + 25

total 1000 x + (4x + 25) =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x + y = 1000

Sue: y = 4x + 25

total 1000 x + (4x + 25) = 1000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $x + (4x + 25) = 1000$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $x + (4x + 25) = 1000$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25 = 4x + 25$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $x + (4x + 25) = 1000$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25 = 1000$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 4x + 25 = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = \frac{y}{1000}$$
 $x + y = 1000$
Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 975$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x + y = 1000$$

Sue: $y = 4x + 25$
total $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 4x + 25 = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$
 $x + y = 1000$
 $y = 4x + 25$
 $y = 780 + 25$
 $y = 805$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:
$$x = y = 1000$$

Sue: $y = 4x + 25$
total $x = 1000$
 $x + (4x + 25) = 1000$
 $5x + 25 = 1000$
 $5x = 975$
 $x = 195$
Bill earned \$105 and

Bill earned \$195, and Sue earned \$805.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

brand A:

brand B:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

brand A:

brand B:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

brand A: x

brand B:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

X

number of pounds

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

brand A: x

brand B: y

mixture 50

x +

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

x + y

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

x + y =

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds

x + y = 50

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number value per of pounds pound

x + y = 50

brand A: x

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number value per of pounds pound

x + y = 50

brand A: x 150¢

brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number	value per
of pounds	pound

brand A: x 150¢

brand B: y 180¢

mixture 50

$$x + y = 50$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			value per
C	f	pounds	pound
brand A	•	X	150¢
brand B	•	У	180¢
mixture	5	50	159¢

$$x + y = 50$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50
brand A: x	150¢		
brand B: y	180¢		
mixture 50	159¢		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50
brand A: x	150¢	150x¢	
brand B: y	180¢		
mixture 50	159¢		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	-	total value	x + y = 50
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	
mixture 50	159¢		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	
mixture 50	159¢		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	
mixture 50	159¢	7950 ¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	pound	total value	x + y = 50 $150x$
brand A: x brand B: y	,	,	
mixture 50	159¢	7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	-	total value	x + y = 50 $150x +$
brand A: x	150¢	150x¢	130X
brand B: y	180¢	180y¢	
mixture 50	159¢	7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	•	total value	x + y = 50 $150x + 180y$
brand A: x	150¢	150x¢	130X + 160y
brand B: y	180¢	180y¢	
mixture 50	159¢	7950 ¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50 150x + 180y =
brand A: x	150¢	150x¢	1501 1009
brand B: y	180¢	180y¢	
mixture 50	159¢	7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per s pound	total value	x + y = 50 150x + 180y = 7950
brand A: x	150¢	150x¢	130X + 100y 7730
brand B: y	180¢	180y¢	
mixture 50	159¢	7950 ¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number value per of pounds pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x 150¢	150x¢	. –
brand B: y 180¢	180y¢	15x
mixture ${50}$ $159¢$	7950 ¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per s pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	. –
brand B: y	180¢	180y¢	15x +
mixture ${50}$	159¢	7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y
mixture 50	159¢	7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number value pounds pound		x + y = 50 $150x + 180y = 7950$
brand A: x 150g	5 150x¢	
brand B: y 180g	ź 180y¢	15x + 18y =
mixture 50 159	¢ 7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number v of pounds	-	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y = 795
mixture 50	159¢	7950 ¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	15x + 18y = 795
mixture ${50}$	159¢	7950 ¢	-15x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x -$
mixture $\overline{50}$	159¢	7950 ¢	-13X —

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per	total	x + y = 50
of pounds	pound	value	150x + 180y = 7950
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	15x + 18y = 795 -15x - 15y
mixture ${50}$	159¢	7950 ¢	10A - 10y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number valu	-	x + y = 50
of pounds po	ound value	150x + 180y = 7950
brand A: x 15	50¢ 150 x¢	
brand B: y 18	30¢ 180y¢	15x + 18y = 795
$\frac{-}{50}$ 15	59¢ 7950¢	-15x - 15y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per	total	x + y = 50
of pounds	1	value	150x + 180y = 7950
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per ls pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture ${50}$	159¢	7950¢	$\frac{-13x - 13y730}{}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	r value per ls pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950¢	$\frac{-13x - 13y730}{3y}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per ls pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950¢	$\frac{-13x - 13y730}{3y =}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per s pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture $\overline{50}$	159¢	7950 ¢	$\frac{-13x - 13y730}{3y = 45}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per s pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950 ¢	$\frac{-13x - 13y - 730}{3y = 45}$
			$\mathbf{y} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per pound	total value	x + y = 50
brand A: x	150¢	150x¢	150x + 180y = 7950
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture $\overline{50}$	159¢	7950 ¢	$\frac{13x + 13y + 730}{3y = 45}$
			y = 15

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	r value per ds pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950¢	$\frac{-13x - 13y730}{3y = 45}$
			y = 15
			x + y = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

X

	value per ls pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	•
brand B: y	180¢	180y¢	15x + 18y = 795
	,		-15x - 15y = -750
mixture 50	159¢	7950¢	3y = 45
			y = 15
			x + y = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

 \mathbf{x} +

of pound	value per s pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x brand B: y	150¢ 180¢	150x¢ 180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950¢	$\frac{-13x - 13y730}{3y = 45}$
			y = 15 $x + y = 50$
			J

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	value per ls pound	total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	ř
brand B: y	180¢	180y¢	15x + 18y = 795
	,		-15x - 15y = -750
mixture 50	159¢	7950¢	3y = 45
			y = 15
			x + y = 50
			x + 15

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

of pounds		total value	x + y = 50 $150x + 180y = 7950$
brand A: x	150¢	150x¢	15x + 18y = 795
brand B: y	180¢	180y¢	-15x - 15y = -750
mixture 50	159¢	7950¢	3y = 45
			y = 15
			x + y = 50
			x + 15 = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	r value per ds pound	total value	x + y = 50
brand A: x brand B: y	150¢ 180¢	150x¢ 180y¢	150x + 180y = 7950 $15x + 18y = 795$ $15x - 15x = 750$
mixture 50	159¢	7950¢	-15x - 15y = -750 $3y = 45$
			y = 15 $x + y = 50$
			x + y - 30 $x + 15 = 50$
			$\mathbf{x} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	r value per ds pound	total value	x + y = 50 $150x + 180x - 7050$
brand A: x	150¢	150x¢	150x + 180y = 7950
brand B: y	180¢	180y¢	15x + 18y = 795 $-15x - 15y = -750$
mixture 50	159¢	7950 ¢	$\frac{-13x + 13y + 730}{3y = 45}$
			y = 15
			x + y = 50
			x + 15 = 50
			x = 35

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

b	number of pounds rand A: x rand B: y nixture 50	value per pound 150¢ 180¢ 159¢	total value 150x¢ 180y¢ 7950¢	x + y = 50 $150x + 180y =$ $15x + 18y =$ $-15x - 15y =$
m	ixture 50	159¢	7950¢	3y=

Use 35 pounds @ \$1.50 per pound and 15 pounds @ \$1.80 per pound.

$$+ 18y = 795$$
 $- 15y = -750$
 $3y = 45$
 $y = 15$
 $x + y = 50$
 $x + 15 = 50$
 $x = 35$

7950

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person:

Second person:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? $\frac{1}{x}$

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y =

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200

First person: x

Second person: __y_

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

total 200

x + y = 200

y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: __y

total 200

x + y = 200

y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

total 200

x + y = 200

y = 4x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

total 200

x + y = 200

y = 4x -

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: __y_

total 200

x + y = 200

y = 4x - 25

X

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person:

Second person: y

200 total

x + y = 200

$$y = 4x - 25$$

 \mathbf{x} +

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

total 200

x + y = 200

$$y = 4x - 25$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

First person:
$$x$$

Second person: y $y = 4x - 25$

total
$$\frac{3}{200}$$
 $x + (4x - 25)$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

First person:
$$x$$
 $y = 4x - 25$

total
$$\overline{200}$$
 $x + (4x - 25) =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

First person:
$$x$$

Second person: y $y = 4x - 25$

total
$$\frac{3}{200}$$
 $x + (4x - 25) = 200$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

Second person: y

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

Second person: y

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

X

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

Second person: __y_

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

$$\mathbf{x} =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

$$x = 45$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

Second person: y

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

$$x = 45$$

$$y = 4x - 25$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

Second person: __y_

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

$$x = 45$$

$$y = 4x - 25$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

Second person: y

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

$$x = 45$$

$$y = 4x - 25$$
$$y = 180$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$

$$5x - 25 = 200$$

$$5x = 225$$

$$x = 45$$

$$y = 4x - 25$$
$$y = 180 - 25$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

$$x + y = 200$$

 $y = 4x - 25$
 $x + (4x - 25) = 200$
 $5x - 25 = 200$
 $5x = 225$
 $x = 45$
 $y = 4x - 25$
 $y = 180 - 25$
 $y = 4x - 25$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

$$x + y = 200$$

$$y = 4x - 25$$

$$x + (4x - 25) = 200$$
$$5x - 25 = 200$$

$$5x = 225$$

$$x = 45$$

$$y = 4x - 25$$

 $y = 180 - 25$
 $y = 155$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200

$$y = 4x - 25$$

 $x + (4x - 25) = 200$
 $5x - 25 = 200$
 $5x = 225$
 $x = 45$
 $y = 4x - 25$
 $y = 180 - 25$
 $y = 155$

One person received \$45, and the other received \$155.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first: x

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first: x

second: y

total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first: x

second: y

total \$5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first: x

second: y

total \$5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount x + invested

first: x

second: y

total \$5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount	x + y
invested	

first: x

second: y

total \$5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount invested	x + y =
first: x	
second: y	
total \$5000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested

first: x

second: y

total \$5000

x + y = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

x + y = 5000

amount	interest
invested	rate

first: x

second: y

total \$5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount	interest
invested	rate
	20/

first: x 3%

second: y

total \$5000

$$x + y = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

x + y = 5000

	amount invested	interest rate	
first:	X	3%	
second:	У	4%	
total S	\$5000		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	X	3%	
second:	y	4%	
total S	\$5000		

x + y = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested		interest earned	x + y = 5000
first:	X	3%	.03x	
second:	У	4%		
total	\$5000			

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

5000

37212 57215	interest rate	interest earned	x + y = 1
first: x	3%	.03x	
second: y	4%	.04y	
total \$5000			

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000
first:	X	3%	.03x	
second:	У	4%	.04y	
total \$	5000			

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	
first:	X	3%	.03x	
second:	У	4%	.04y	
total S	\$5000		\$185	

$$x + y = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount invested	interest rate	interest earned	x + y = 5000 $.03x$
first: x	3%	.03x	.0 <i>3</i> A
second: y	4%	.04y	
total \$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount invested	interest rate	interest earned	x + y = 5000 $.03x +$
first: x	3%	.03x	.UJA
second: y	4%	.04y	
total \$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y$
first: x	3%	.03x	.03A + .04y
second: y	4%	.04y	
total \$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first:	X	3%	.03x
second:	У	4%	.04y
total S	\$5000		\$185

$$x + y = 5000$$
 $.03x + .04y =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first:	X	3%	.03x
second:	У	4%	.04y
total	5000		\$185

$$x + y = 5000$$

 $.03x + .04y = 185$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested		interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	-
second:	У	4%	.04y	3x
total S	\$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested		interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	-
second:	У	4%	.04y	3x +
total \$	55000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested		interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	
second:	У	4%	.04y	3x + 4y
total §	\$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	•
second:	У	4%	.04y	3x + 4y =
total §	55000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	
second:	У	4%	.04y	3x + 4y = 18,500
total S	\$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000
first:	X		.03x	.03x + .04y = 185
second:	У	4%	.04y	3x + 4y = 18,500
total S	\$5000		\$185	-3x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		interest	interest	x + y = 5000
	invested	rate	earned	.03x + .04y = 185
first:	X	3%	.03x	•
second:	<u>y</u>	4%	.04y	3x + 4y = 18,500 -3x -
total \$	\$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount	interest	interest	x + y = 5000
C *	invested	rate	earned	.03x + .04y = 185
first:	X	3%	.03x	2 + 4 10.500
second:	<u>y</u>	4%	.04y	3x + 4y = 18,500 -3x - 3y
total S	\$5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		interest	interest	x + y = 5000
C* 4	invested	rate	earned	.03x + .04y = 185
IIrst:	X	3%	.03x	3x + 4y = 18,500
second:	У	4%	.04y	•
total S	5000			-3x - 3y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		interest	interest	x + y = 5000
first	invested	rate	earned .03x	.03x + .04y = 185
	X		0.4	3x + 4y = 18,500
second:	<u>y</u>	4%	.04y	-3x - 3y = -15,000
total \$	55000		\$185	3A 3y 13,000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount		interest	x + y = 5000
first.	invested	rate	earned .03x	.03x + .04y = 185
	X		0.4	3x + 4y = 18,500
second:	У	4%	.04y	-3x - 3y = -15,000
total S	5000		\$185	$\frac{3\lambda}{3}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	•
second:	У	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
total §	55000		\$185	<u> </u>
				${f y}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000
first:	X	3%	.03x	.03x + .04y = 185
second:	У	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
total S	\$5000		\$185	-3x-3y-13,000
				$\mathbf{y} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

totai 4	3000		Ψ103	y = 3,500
total §	\$5000		\$185	-3x - 3y13,000
second:	y	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
first:	X	3%	.03x	
	amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y = 185$
		_	_	y + y - 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y = 185$
first	X	3%	.03x	·
second	: у	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
total	\$5000		\$185	
				y = 3,500
				x + y = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

F \ \ \ \ \ \

	amount invested	interest rate	interest earned	x + y = 5000
first:	X	3%	.03x	.03x + .04y = 185
second	у	4%	.04y	3x + 4y = 18,500
total	\$5000		\$185	-3x - 3y = -15,000
				y = 3,500
				x + y = 5000
				X

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000
first	: x	3%	.03x	.03x + .04y = 185
second	: y	4%	.04y	3x + 4y = 18,500
total	\$5000		\$185	-3x - 3y = -15,000
				y = 3,500
				x + y = 5000
				$_{\rm X}$ +

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

x + 3500

	amount invested	interest rate	interest earned	x + y = 5000
first:	X	3%	.03x	.03x + .04y = 185
second:	У	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
total \$	55000		\$185	
				y = 3,500
				x + y = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

x + 3500 =

	amount invested	interest rate	interest earned	x + y = 5000 $.03x + .04y = 185$
first:	X	3%	.03x	·
second:	У	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
total \$	55000		\$185	-3x - 3y13,000
				y = 3,500
				x + y = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first:	X	3%	.03x
second:	У	4%	.04y
total S	\$5000		\$185

$$x + y = 5000$$

$$.03x + .04y = 185$$

$$3x + 4y = 18,500$$

$$-3x - 3y = -15,000$$

$$y = 3,500$$

$$x + y = 5000$$

$$x + 3500 = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

x + x - 5000

 $\mathbf{x} =$

	amount	interest	interest	x + y = 5000
	invested	rate	earned	.03x + .04y = 185
first:	X	3%	.03x	
second:	V	4%	.04y	3x + 4y = 18,500
Second.		.,0		-3x - 3y = -15,000
total \$	55000		\$185	<u> </u>
				y = 3,500
				x + y = 5000
				x + 3500 = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

x = 1500

first:	amount invested	interest rate 3%	interest earned .03x	x + y = 5000 $.03x + .04y = 185$
second:	у 5000	4%	.04y \$185	3x + 4y = 18,500 $-3x - 3y = -15,000$
				y = 3,500 x + y = 5000 x + 3500 = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	X	3%	.03x
second:	y	4%	.04y
total	\$5000		\$185

She invested \$1500 at 3% and \$3500 at 4%.

$$x + y = 5000$$

$$.03x + .04y = 185$$

$$3x + 4y = 18,500$$

$$-3x - 3y = -15,000$$

$$y = 3,500$$

$$x + y = 5000$$

$$x + 3500 = 5000$$

$$x = 1500$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution

first: x

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

```
volume of solution first: x second: y total
```

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

X

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

x +

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

x + y

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y =$$

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y = 50$$

volume of solution

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y = 50$$

volume percent of solution acid

first: x

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y = 50$$

volume percent of solution acid

first: x 35%

second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y = 50$$

volume percent of solution acid

first: x = 35%

second: y 10%

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y = 50$$

volume percent of solution acid first: x = 35% second: y = 10% total 50 cc = 25%

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 50$$

(volume of solution	•	volume of acid
first:	X	35%	
second:	У	10%	
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 50$$

	volume of solution	-	volume of acid
first:	X	35%	.35x
second:	У	10%	
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 50$$

	volume of solution	•	volume of acid
first:	X	35%	.35x
second	: y	10%	.10y
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 50$$

(volume of solution	-	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$x + y = 50$$

(volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	y	10%	.10y
total	50 cc	25%	12.5 cc

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$x + y = 50$$

.35x

(volume of solution	-	volume of acid
first:	X	35%	.35x
second:	y	10%	.10y
total	50 cc	25%	12.5 cc

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			7 13 10 , 0 000101	x + y = 50
		percent acid		.35x +
first	: X	35%	.35x	
second	: <u>y</u>	10%	.10y	
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			, , , , , , , , , , , , , , ,	x + y = 50
		percent acid		.35x + .10y
first:	X	35%	.35x	
second	: <u>y</u>	10%	.10y	
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume	1	volume
	of solution	acid	of acid
first:	X	35%	.35x
second:	<u>y</u>	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

 $.35x + .10y =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume	percent	volume
	of solution	-	of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

 $.35x + .10y = 12.5$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

C	volume of solution	-	volume of acid
first:	X	35%	.35x
second:	y	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

.35x + .10y = 12.5

35x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume of solution	-	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$
 $.35x + .10y = 12.5$
 $35x + ...$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume of solution	-	volume of acid
first:	X	35%	.35x
second:	y	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$
 $.35x + .10y = 12.5$
 $35x + 10y$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume of solution	-	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$
 $.35x + .10y = 12.5$
 $35x + 10y =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$
$$.35x + .10y = 12.5$$
$$35x + 10y = 1250$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x_2 \perp x_2 = 50$

(volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $\mathbf{v} + \mathbf{v} - \mathbf{50}$

	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x —
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $\mathbf{v} + \mathbf{v} - \mathbf{50}$

	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x - 10y
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

12.5

1250

			15 20 / 0 300141	x + y = 50
	volume of solution	percent acid	volume of acid	.35x + .10y = 1
first:	X	35%	.35x	35x + 10y = 1
second	: у	10%	.10y	-10x - 10y =
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x \perp x - 50$

				x + y = 30
	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

1250

-500

			10 10 , 0 0001000	x + y = 50
	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

				$\mathbf{x} + \mathbf{y} - \mathbf{y}$
	volume of solution	-	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

				$\mathbf{A} + \mathbf{y} = \mathbf{J}0$
	volume of solution		volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	у	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

				$\mathbf{A} + \mathbf{y} = 30$
	volume of solution	1	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x \perp x - 50$

				x + y = 30
	volume of solution	1	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second	: y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				$\mathbf{x} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x \perp x - 50$

				x + y - 30
		percent n acid	volume of acid	.35x + .10y = 12.5
first	: x	35%	.35x	35x + 10y = 1250
second	l: y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

				x + y = 30
	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x_2 \perp x_2 = 50$

				x + y = 30
	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second	: y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50
				30

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x \perp x - 50$

				x + y - 30
	volume f solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50
				30 +

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $\mathbf{v} + \mathbf{v} - \mathbf{50}$

				x + y = 30
	volume of solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	У	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50
				30 + y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

				x + y = 30
	volume of solution	1	volume of acid	.35x + .10y = 12.5
first	X	35%	.35x	35x + 10y = 1250
second	: у	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50
				30 + y =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

				x + y = 30
	volume of solution	1	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second	y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50
				30 + y = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

			x + y = 50
	lume percent olution acid	volume of acid	.35x + .10y = 12.5
first:	x 35%	.35x	35x + 10y = 1250
second:	y 10%	.10y	-10x - 10y = -500
total $\frac{}{50}$) cc 25%	12.5 cc	25x = 750
			x = 30
			x + y = 50
			30 + y = 50
			$\mathbf{y} =$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $x \perp x - 50$

				x + y - 30
	volume f solution	percent acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				x = 30
				x + y = 50
				30 + y = 50
				y = 20

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

	volume of solution		volume of acid	.35x + .10y = 12.5
	X		.35x	35x + 10y = 1250
second	: у	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				$\tau = 20$

She should use 30 cc of the 35% solution and 20 cc of the 10% solution.

$$+10y = 1250$$
 $-10y = -500$
 $25x = 750$
 $x = 30$
 $x + y = 50$
 $30 + y = 50$
 $y = 20$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

burger:

fries:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

cost each

burger:

fries:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

cost

each

burger: x ¢

fries:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

cost

each

burger: x ¢

fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

6x

cost

each

burger: x ¢

fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

6x +

cost

each

burger: x ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y$$

cost

each

burger: x ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y =$$

cost

each

burger: x ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost

each

burger: x ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost each

3x

burger: x ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost each

3x +

burger: x¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost each

3x + 5y

burger: x ¢

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost

3x + 5y =each

burger: x ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost each

3x + 5y = 660

burger: x ¢

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

cost each

$$3x + 5y = 660$$

burger: x ¢

30x

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$

$$30x +$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$

$$30x + 20y$$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$

$$30x + 20y =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$\begin{array}{l}
\text{cost} \\
\text{each}
\end{array} \quad 3x + 5y = 660$$

burger:
$$x \notin 30x + 20y = 4350$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$cost$$
each
$$3x + 5y = 660$$

burger:
$$x \notin 30x + 20y = 4350$$

fries: $y \not \in -12x$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$

burger:
$$x \notin 30x + 20y = 4350$$

fries: $y \not \in -12x -$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$

burger:
$$x \notin 30x + 20y = 4350$$

fries:
$$y \notin -12x - 20y$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$cost$$
each
$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$

fries: $y \not e$ -12x - 20y =

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$

$$x \neq 4250$$

burger: x ¢ 30x + 20y = 4350

fries: y ¢ -12x - 20y = -2640

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x =$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

X

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$x = 1710$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$cost each$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$

$$-12x - 20y = -2640$$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$x = 95$$

$$6x + 4y = 870$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$x = 95$$

$$6x + 4y = 870$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y =$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y = -450$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y = -450$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y = -450$$

$$x = 95$$

$$y = -450$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y = -450$$

$$x = 95$$

$$y = 75$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin 30x + 20y = 4350$
fries: $y \notin -12x - 20y = -2640$

$$18x = 1710$$

$$6x + 4y = 870$$

$$-6x - 10y = -1320$$

$$-6y = -450$$

$$x = 95$$

$$y = 75$$

A burger costs 95 ϕ each, and an order of fries costs 75 ϕ each.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

Good luck on your homework!!

burger: fries:	,	30x + 20y = 4350 -12x - 20y = -2640	6x + 4y = 870 -6x - 10y = -1320
11105.	jγ	$\frac{12x + 20y + 2010}{18x = 1710}$	-6y = -450
		x = 95	y = 75

A burger costs 95 ¢ each, and an order of fries costs 75 ¢ each.