General Algebra 2 Lesson \#4 Unit 3 Class Worksheet \#4
For Worksheets \#5- \#8

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first:
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x X
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x
X +
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y
$$

second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=
$$

second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20$
second: $y \quad x$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

second: $y \quad x=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=20 \\
\text { second: } y & x=3 y
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=20 \\
\text { second: } y & x=3 y-
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

second: $y \quad x=3 y-4$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$(3 y-4)$
second: $y \quad x=3 y-4$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$(3 y-4)+$
second: $y \quad x=3 y-4$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$(3 y-4)+y$
second: $y \quad x=3 y-4$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$(3 y-4)+y=$
second: $y \quad x=3 y-4$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x
second: y

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

$$
x=3 y-4
$$

$$
4 y
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

$$
x=3 y-4
$$

$$
4 y-4
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

$$
x=3 y-4
$$

$$
4 y-4=20
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$$
x=3 y-4
$$

$(3 y-4)+y=20$
$4 y-4=20$
$4 y$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{gathered}
(3 y-4)+y=20 \\
4 y-4=20 \\
4 y=
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
(3 y-4)+y=20
$$

$$
4 y-4=20
$$

$$
4 y=24
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{gathered}
(3 y-4)+y=20 \\
4 y-4=20 \\
4 y=24 \\
y=
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{gathered}
(3 y-4)+y=20 \\
4 y-4=20 \\
4 y=24 \\
y=6
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
(3 y-4)+y=20 \quad x=3 y-4
$$

$$
4 y-4=20
$$

$$
4 y=24
$$

$$
y=6
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{gathered}
(3 y-4)+y=20 \\
4 y-4=20 \\
4 y=24 \\
y=6
\end{gathered}
$$

$$
x=3 y-4
$$

$$
x=3(6)
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4
\end{array}
$$

$$
4 y=24
$$

$$
y=6
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cc}
(3 y-4)+y=20 & x= \\
4 y-4=20 & x= \\
4 y=24 & x= \\
y=6 &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18 \\
y=6 &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cc}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)- \\
4 y=24 & x=18-4 \\
y=6 &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18-4 \\
y=6 & x=
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18-4 \\
y=6 & x=14
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
(3 y-4)+y=20
$$

$$
x=3 y-4
$$

$$
4 y-4=20
$$

$$
4 y=24 \quad x=18-4
$$

$$
y=6
$$

$$
x=14
$$

The first number is 14 ,

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
\begin{aligned}
& x+y=20 \\
& x=3 y-4
\end{aligned}
$$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18-4 \\
y=6 & x=14
\end{array}
$$

The first number is 14 , and the second number is 6 .

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first:
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x
X
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x
X +
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: $x \quad x+y$ second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x

$$
x+y=
$$

second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: $\mathrm{x} \quad \mathrm{x}+\mathrm{y}=15$
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: $x \quad x+y=15$
second: $y \quad x$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x

$$
x+y=15
$$

second: $y \quad x-$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x

$$
x+y=15
$$

second: y
$x-y$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x

$$
x+y=15
$$

second: y

$$
x-y=
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x

$$
x+y=15
$$

second: $y \quad x-y=9$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=15 \\
\text { second: } y & x-y=9 \\
\hline
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rc}
\text { first: } x & \begin{array}{c}
x+y=15 \\
\text { second: } y
\end{array} \\
& 2 x-y=9
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rc}
\text { first: } x \\
\text { second: } y & \begin{array}{c}
x+y=15 \\
x-y=9
\end{array} \\
\cline { 2 - 3 } & 2 x=
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{cc}
\text { first: } x & \begin{array}{c}
x+y=15 \\
\text { second: } y
\end{array} \\
& 2 x=24
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{cc}
\text { first: } x & x+y=15 \\
\text { second: } y & x-y=9 \\
& 2 x=24 \\
x=
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rr}
\text { first: } x & \begin{array}{r}
x+y=15 \\
\text { second: } y
\end{array} \\
& \begin{array}{r}
x-y=9 \\
2 x
\end{array}=24 \\
x=12
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: $x \quad x+y=15 \quad x+y=15$
second: y

$$
\begin{array}{r}
x-y=9 \\
\hline 2 x=24 \\
x=12
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rcc}
\text { first: } x & x+y=15 & x+y=15 \\
\text { second: } y & \begin{array}{c}
x-y=9 \\
\cline { 2 - 3 } \\
\end{array} & \\
& 2 x=24 & \\
& x=12 &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x
second: y

$$
\begin{array}{cc}
x+y=15 & x+y=15 \\
x-y=9 & 12+y
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rcc}
\text { first: } x & x+y=15 & x+y=15 \\
\text { second: } y & \begin{array}{c}
x-y=9 \\
\end{array} & \begin{array}{rl}
x-y & 12+y=15 \\
& 2 x
\end{array} \\
& x &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

first: x	$x+y=15$	$x+y=15$
second: y	$x-y=9$	$12+y=15$
$2 x=24$	$y=$	
	$x=12$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x

$$
\begin{array}{cc}
x+y=15 & x+y=15 \\
x-y=9 & 12+y=15 \\
\cline { 1 - 1 } 2 x=24 & y=3 \\
x=12 &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

first: x	$x+y=15$	$x+y=15$
second: y	$x-y=9$	$12+y=15$
	$2 \mathrm{x}=24$	$y=3$
	$\mathrm{x}=12$	

The numbers are 12 and 3.

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
dimes:
nickels:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

number
of coins

dimes:
nickels:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes: x
nickels:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\mathbf{\$ 3 . 2 0}$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes: x
nickels: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes: X
nickels:
total

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins
dimes: x
nickels:
total $\frac{\mathrm{y}}{40}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
    x
```

dimes:
nickels:
total $\frac{\mathrm{y}}{40}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
X +
x
```

dimes:
nickels:
total $\frac{\mathrm{y}}{40}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins
dimes: x
nickels:
total $\frac{\mathrm{y}}{40}$

$$
x+y
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins
dimes: x
nickels:
total $\frac{\mathrm{y}}{40}$

$$
x+y=
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins
dimes: x
nickels:
total $\frac{\mathrm{y}}{40}$

$$
x+y=40
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number Value of
x+y=40
of coins the coins
\[
x+y=40
\]
```

dimes:

nickels:	$\frac{y}{40}$
total	40

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number Value of
x+y=40
```

dimes: x 10x申
nickels:
total $\frac{\mathrm{y}}{40}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number Value of
x+y=40
```

dimes: x 10x申
nickels: $\frac{y}{40} \quad 5 y \phi$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number Value of
x+y=40
```

dimes: x 10x申

nickels: | total | y | $5 y$ |
| :---: | :---: | :---: |
| | 40 | |

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins	Value of the coins
x	$10 \mathrm{x} \phi$
y	$5 \mathrm{y} \phi$
40	$320 ¢$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | number
 nalue of
 of coins | C the coins |
| :---: | :---: | :---: | :---: |$\quad 10 \mathrm{x}+\mathrm{y}=40$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | number
 nalue of
 of coins | x the coins |
| :---: | :---: | :---: | :---: |, $10 \mathrm{x}+\mathrm{y}=40$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
$\left.\begin{array}{cccc} & \begin{array}{c}\text { number } \\ \text { nalue of } \\ \text { of coins }\end{array} & \mathrm{x} \text { the coins }\end{array}\right) 10 \mathrm{x}+\mathrm{y}=40$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number nolue of of coins	the coins	$10 \mathrm{x}+\mathrm{y}=40$
dimes:	x	$10 \mathrm{y} \phi$	
nickels:	y	$5 \mathrm{y} \phi$	
total	40	320ϕ	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins	Value of the coins	$10 \mathrm{x}+\mathrm{y}=40$
dimes:	x	$10 \mathrm{x} \phi$	
nickels:	y	$5 \mathrm{y} \phi$	
total	40	320ϕ	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins	Value of the coins $10 x \not$	$\begin{gathered} x+y=40 \quad \xrightarrow{-5} \\ 10 \mathrm{x}+5 \mathrm{y}=320 \end{gathered}$
dimes:	X	10×6	
nickels:	y	5 y ¢	
total	40	$320 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | numberValue of
 of coins | $x+y=40$
 the coins | $10 \mathrm{x}+5 \mathrm{y}=320$ |
| :---: | :---: | :---: | :---: | :---: |

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | numberValue of
 of coins | $x+y=40$
 the coins | $10 x+5 y=320$ |
| :---: | :---: | :---: | :---: | :---: |

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | numberValue of
 of coins | $x+y=40$
 the coins | $10 x+5 y=320$ |
| :---: | :---: | :---: | :---: | :---: |

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	numberValue of of coins	$x+y=40$ the coins	$10 x+5 y=320$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins X	Value of the coins 10x¢	$$
nickels:	y	5yd	
total	40	320¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins X	Value of the coins 10x¢	$\begin{aligned} x+y=40 & -5 \\ 10 x+5 y=320 & -5 x-5 y=-200 \\ & 10 x+ \end{aligned}$
nickels:	y	5yd	
total	40	320¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins X	Value of the coins 10xc	$\begin{gathered} x+y=40 \\ 10 x+5 y=320 \\ \longrightarrow 10 x+5 y \end{gathered}$
nickels:	y	5yd	
total	40	$320 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins X	$\begin{aligned} & \text { Value of } \\ & \text { the coins } \\ & 10 \mathrm{x} \neq \end{aligned}$	$\begin{aligned} x+y=40 & \xrightarrow{-5}-5 x-5 y=-200 \\ 10 x+5 y=320 & \longrightarrow 10 x+5 y= \end{aligned}$
nickels:	y	5 y ¢	
total	40	$320 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	numberValue of of coins the coins	$\mathrm{x}+\mathrm{y}=40 \xrightarrow{-5} \quad-5 \mathrm{x}-5 \mathrm{y}=-200$		
dimes:	x	$10 \mathrm{x} \phi$		
nickels:	y	$5 \mathrm{y} \phi$		
total	40	320ϕ		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	$\begin{array}{c}\text { number } \\ \text { num } \\ \text { of coins }\end{array}$	
the coins of		

$$
\begin{aligned}
x+y=40 & \xrightarrow{-5}-5 x-5 y=-200 \\
10 x+5 y=320 & \longrightarrow 10 x+5 y=320
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes: nickels: total	number of coins X	Value of the coins 10x¢	$\begin{gathered} \mathrm{x}+\mathrm{y}=40 \quad \xrightarrow{-5} \\ 10 \mathrm{x}+5 \mathrm{y}=320 \end{gathered}$	$\begin{aligned} & 5 x-5 y=-200 \\ & x+5 y=320 \end{aligned}$
	y	5y¢		$5 \mathrm{x}=120$
	40	$320 ¢$		$\mathbf{x}=24$
	There are $\mathbf{2 4}$ dimes and 16 nickels.			$24+y=40$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?
dimes:
quarters:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?
number
of coins
dimes:
quarters:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number
of coins

dimes: X
quarters:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number
of coins

dimes: x
quarters: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number Value of
of coins the coins

dimes: x
quarters: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

```
number Value of
of coins the coins
```

dimes: x 10x申
quarters: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

```
number Value of
of coins the coins
```

dimes: x 10x申
quarters: y 25yc

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins	Value of the coins
x	$10 \mathrm{x} \varnothing$
y	$25 \mathrm{y} \varnothing$

total

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins
dimes:	x	$10 \mathrm{x} \varnothing$
quarters:	y	$25 \mathrm{y} \phi$
total		$800 ¢$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

10x

	number of coins	
dime of		
dimes:	x	$10 \mathrm{x} \phi$
quarters:	y	$25 \mathrm{y} \phi$
total		800ϕ

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes:	number of coins	Value of the coins
	X	10x¢
quarters:	y	25yd
total		800¢

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$10 x+25 y$
dimes:	X	10x¢	
quarters:	y	25yd	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins olue of the coins	
dimes:	x	$10 \mathrm{x} \phi$
quarters:	y	$25 \mathrm{y} \phi$
total		$800 ¢$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

$$
10 x+25 y=800
$$

number Value of
of coins the coins
X
dimes: x 10x申
quarters:
total $\frac{\mathrm{y} \quad 25 \mathrm{y} \phi}{800 ¢}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x= \end{gathered}$
dimes:	x	10x¢	
quarters:	y	25y ${ }^{\text {d }}$	
total		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y \end{gathered}$
dimes:	x	10x¢	
quarters:	y	25yd	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y- \end{gathered}$
dimes:	X	10x¢	
quarters:	y	25y ${ }^{\text {d }}$	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	X	10x¢	
quarters:	y	25yd	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

				$10 \mathrm{x}+25 \mathrm{y}=800$
	number of coins	Value of the coins		$x=2 y-1$
dimes:	x	10x¢	$10($	
quarters:	y	25yc		
total		800¢		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	x	10x¢	$10(2 \mathrm{y}-1)$
quarters:	y	$25 y ¢$	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	x	10x¢	$10(2 y-1)+$
quarters:	y	25yc	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	x	10x¢	$10(2 y-1)+25 y$
quarters:	y	$25 y ¢$	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	$25 y d$	
total		800¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	25 y ¢	20
total		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=$
	y	25y ${ }^{\text {c }}$	
tal		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	25 y ¢	
total		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	$25 y d$	
total		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	25 y ¢	
total		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	$25 y ¢$	
total		$800 ¢$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	x	10x¢	$10(2 y-1)+25 y=800$
quarters:	y	25 y ¢	$20 y-10+25 y=800$
total		$800 ¢$	$45 y$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes:	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	(2y-1) + 25 y
	y	25yd	
total		800¢	
			45 y -

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	x	10x¢	(2y-1) +25 y
quarters:	y	25yd	
total		$800 ¢$	45y -

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	X	10x¢	$10(2 y-1)+25 y=800$
quarters:	y	$25 y d$	
total		800¢	$45 y-10=800$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	25yc	$20 y-10+25 y=800$
		800¢	$45 y-10=800$
			45 y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	25yc	$20 y-10+25 y=800$
		800¢	$45 y-10=800$
			$45 \mathrm{y}=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number nalue of of coins the coins			
dimes:	x	$10 \mathrm{x}+25 \mathrm{y}=800$		
quarters:	y	$25 \mathrm{y} \phi$		
total		$800 ¢$		$10(2 \mathrm{y}-1)+25 \mathrm{y}=800$
:---:				

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	$\begin{array}{c}\text { number } \\ \text { of coins }\end{array}$	$10 x+25 y=800$
Vale of		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	x	10x¢	$10(2 y-1)+25 y=800$
	y	25yc	$20 y-10+25 y=800$
		800¢	$45 y-10=800$
			$45 y=810$
			$y=18$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	$x=2 y-1$
	x	10x¢	$10(2 y-1)+25 y=800$	
	y	$25 y d$	$20 y-10+25 y=800$	
		$800 ¢$	$45 y-10=800$	
			$45 y=810$	
			$\mathrm{y}=18$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	x	10x¢	$10(2 y-1)+25 y=800$	$x=2 y-1$
	y	$25 y d$	$20 \mathrm{y}-10+25 \mathrm{y}=800$	$\mathrm{x}=$
		$800 ¢$	$45 \mathrm{y}-10=800$	
			$45 \mathrm{y}=810$	
			$\mathrm{y}=18$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	x	10x¢	$10(2 y-1)+25 y=800$	$x=2 y-1$
	y	$25 y d$	$20 y-10+25 y=800$	$\mathrm{x}=2(18)$
		800¢	$45 \mathrm{y}-10=800$	
			$45 \mathrm{y}=810$	
			$y=18$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	x	10x¢	$10(2 y-1)+25 y=800$	$x=2 y-1$
	y	$25 y d$	$20 \mathrm{y}-10+25 \mathrm{y}=800$	$x=2(18)-1$
		$800 ¢$	$45 y-10=800$	
			$45 \mathrm{y}=810$	
			$y=18$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	numbe of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	x	10x¢	$10(2 y-1)+25 y=800$	$x=2 y-1$
	y	$25 y d$	$20 \mathrm{y}-10+25 \mathrm{y}=800$	$x=2(18)-1$
		$800 ¢$	$45 \mathrm{y}-10=800$	$\mathbf{x}=$
			$45 y=810$	
			$y=18$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	x	10x¢	$10(2 y-1)+25 y=800$	$x=2 \mathrm{y}-1$
	y	25 yc	$20 y-10+25 y=800$	$\mathrm{x}=2(18)-1$
		800¢	$45 \mathrm{y}-10=800$	$\mathbf{x}=35$
			$45 \mathrm{y}=810$	
			$y=18$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	number of coins	Value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	x	10x¢	$10(2 y-1)+25 y=800$	$x=2 \mathrm{y}-1$
	y	25 y ¢	$20 \mathrm{y}-10+25 \mathrm{y}=800$	$\mathrm{x}=2(18)-1$
		800¢	$45 \mathrm{y}-10=800$	$\mathrm{x}=35$
			$\begin{gathered} 45 y=810 \\ \mathbf{y}=\mathbf{1 8} \end{gathered}$	re are 35 dimes d 18 quarters.

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:
Sue:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: \quad x
Sue:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$
Sue: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$
Sue: $\quad \mathrm{y}$
total

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x
Sue:	y
total	1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x	x
Sue:	y	
total	1000	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x	$x+$
Sue:	y	
total	1000	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x
Sue:	y
total	1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x
Sue:	y
total	1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $x \quad x+y=1000$
Sue: $\frac{y}{1000}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?
$\begin{array}{lcl}\text { Bill: } & x & x+y=1000 \\ \text { Sue: } & y & y \\ \text { total } & 1000 & \end{array}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?
$\begin{array}{lcl}\text { Bill: } & x & x+y=1000 \\ \text { Sue: } & y & y= \\ \text { total } & 1000 & \end{array}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x	$x+y=1000$
Sue:	$\frac{y}{2}$	$y=4 x$
total	1000	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x	$x+y=1000$
Sue:	$\frac{y}{2}$	$y=4 x+$
total	1000	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:	x	$x+y=1000$
Sue:	$\frac{y}{1000}$	$y=4 x+25$
total		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$
Sue: $y \quad y=4 x+25$
total 1000

$$
x+y=1000
$$

$$
y=4 x+25
$$

$$
\mathrm{X}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$
$y=4 x+25$
total 1000

$$
\mathrm{x}+
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$
$y=4 x+25$
total 1000

$$
x+(4 x+25)
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$
$y=4 x+25$
total 1000

$$
x+(4 x+25)=
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000
\end{gathered}
$$

Sue: $\quad \mathrm{y}$
total 1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x
\end{gathered}
$$

total 1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25
\end{gathered}
$$

total 1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=
\end{gathered}
$$

total 1000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=975
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathrm{x}$

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=975
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=975 \\
\mathbf{x}=
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{gathered}
x+y=1000 \\
y=4 x+25 \\
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=975 \\
\mathbf{x}=\mathbf{1 9 5}
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{aligned}
& x+y=1000 \\
& y=4 x+25 \\
& x+(4 x+25)=1000 \quad y=4 x+25 \\
& 5 x+25=1000 \\
& 5 x=975 \\
& \quad \mathbf{x}=\mathbf{1 9 5}
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{array}{cl}
x+y=1000 & \\
y=4 x+25 & \\
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y= \\
5 x=975 & \\
\quad \mathbf{x}=\mathbf{1 9 5} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{array}{cl}
x+y=1000 & \\
y=4 x+25 & \\
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y=780 \\
5 x=975 & \\
\mathbf{x}=\mathbf{1 9 5} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad \mathrm{y}
$$

$$
\text { total } 1000
$$

$$
\begin{array}{cl}
x+y=1000 & \\
y=4 x+25 & \\
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y=780+ \\
5 x=975 & \\
\mathbf{x}=\mathbf{1 9 5} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\mathbf{\$ 2 5}$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad y \quad y=4 x+25
$$

$$
\text { total } 1000
$$

$$
\begin{array}{cl}
x+y=1000 & \\
y=4 x+25 & \\
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y=780+25 \\
5 x=975 & \\
\mathbf{x}=\mathbf{1 9 5} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\mathbf{\$ 2 5}$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad y \quad y=4 x+25
$$

$$
\text { total } 1000
$$

$$
\begin{array}{cl}
\mathrm{x}+\mathrm{y}=1000 & \\
\mathrm{y}=4 \mathrm{x}+25 & \\
\mathrm{x}+(4 \mathrm{x}+25)=1000 & \mathrm{y}=4 \mathrm{x}+25 \\
5 \mathrm{x}+25=1000 & \mathrm{y}=780+25 \\
5 \mathrm{x}=975 & \mathrm{y}= \\
\mathbf{x}=\mathbf{1 9 5} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\mathbf{\$ 2 5}$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x

$$
\text { Sue: } \quad y \quad y=4 x+25
$$

$$
\text { total } 1000
$$

$$
\begin{array}{cc}
x+y=1000 & \\
y=4 x+25 & \\
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y=780+25 \\
5 x=975 & \mathbf{y}=\mathbf{8 0 5} \\
\mathbf{x}=\mathbf{1 9 5} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\mathbf{\$ 2 5}$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y}$
total 1000

$$
\begin{array}{cc}
x+y=1000 & \\
y=4 x+25 & \\
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y=780+25 \\
5 x=975 & y=\mathbf{8 0 5} \\
\mathbf{x}=\mathbf{1 9 5} & \text { Bill earned \$195, and } \\
& \text { Sue earned \$805. }
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
brand A:
brand B :

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number
of pounds
brand A :
brand B :

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
of pounds
brand A: x
brand B :

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
of pounds
brand A: x
brand B: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
of pounds
brand A: x
brand B: y
mixture

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number
of pounds
brand A: x
brand B: y
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
X
of pounds
brand A: x
brand B: y
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number

$$
\mathrm{x}+
$$

of pounds
brand A: x
brand B: y
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number

$$
x+y
$$

brand A: x
brand B: y
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number

$$
x+y=
$$

brand A: x
brand B: y
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number

$$
x+y=50
$$

brand A: x
brand B: y
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per
of pounds pound
brand A: x
brand B: y
mixture 50

$$
x+y=50
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

```
            number value per
of pounds pound
brand A: x 150¢
brand B: y
mixture 50
```


General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number value per
of pounds pound
brand A: x 150¢
brand B: y 180ф
mixture 50

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number value per
of pounds pound
brand A: x 150¢
brand B: y 180ф
mixture 50 159ф
$$
x+y=50
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of poun	value per pound	total	$x+y=50$
brand A: x	$150 ¢$		
brand B: y	180¢		
mixture 50	159¢		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{aligned} & \text { number } \\ & \text { of pound } \end{aligned}$	value per	$\text { total } \text { value }$	$x+y=50$
brand A: x	$150 ¢$	150x¢	
brand B: y	180¢		
mixture 50	159¢		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	number of poundse per pound	total value	$\mathrm{x}+\mathrm{y}=50$
brand A: x	150ϕ	$150 \mathrm{x} \phi$	
brand B: y	180ϕ	$180 \mathrm{y} \phi$	
mixture $\overline{50}$	159ϕ		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number	value per pound	total	$x+y=50$
brand A: x	$150 ¢$	150x¢	
brand B: y	180¢	180y¢	
mixture 50	159¢		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{aligned} & \text { number } \\ & \text { of pound } \end{aligned}$	value per pound	total	$x+y=50$
brand A: x	$150 ¢$	150x¢	
brand B: y	$180 ¢$	180 y ¢	
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	number value per of pounds pound	total value	150 x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pound	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$x+y=50$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	number value per of pounds pound	total value	$\mathrm{x}+\mathrm{y}=50$ brand A: x
150ϕ	$150 \mathrm{x} \phi$	$150 \mathrm{x}+180 \mathrm{y}$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	$\text { total } \text { value }$	$\begin{gathered} x+y=50 \\ 150 x+180 y= \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	number value per of pounds pound	total value	$150 \mathrm{x}+\mathrm{y}=50$
brand A: x	150ϕ	$150 \mathrm{y} \phi$	
brand B: y	180ϕ	$\underline{180 \mathrm{y} \phi}$	
mixture $\overline{50}$	159ϕ	$\overline{7950}$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
\(\left.$$
\begin{array}{lccc} & \begin{array}{l}\text { number value per } \\
\text { of pounds }\end{array}
$$

pound\end{array}\right)\)| total |
| :---: |
| value |$\quad 150 \mathrm{x}+180 \mathrm{y}=7950$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
\(\left.$$
\begin{array}{lccc} & \begin{array}{l}\text { number value per } \\
\text { of pounds }\end{array}
$$

pound\end{array}\right)\)| total |
| :---: |
| value |$\quad 150 \mathrm{x}+180 \mathrm{y}=7950$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	number value per of pounds pound	total value	$150 \mathrm{x}+\mathrm{y}=50$
brand A: x	150ϕ	$150 \mathrm{y} \phi$	15950
brand B: y	180ϕ	$\underline{180 \mathrm{y} \phi}$	$15 \mathrm{x}+18 \mathrm{y}$
mixture $\overline{50}$	159ϕ	$\overline{7950}$	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
$\left.\left.\begin{array}{lccc} & \begin{array}{c}\text { number value per } \\ \text { of pounds }\end{array} \\ \text { pound }\end{array}\right) \begin{array}{c}\text { total } \\ \text { value }\end{array}\right)$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180yd	$15 x+18 y=795$
mixture 50	159 ¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{aligned} & \text { number } \\ & \text { of pound } \end{aligned}$	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180 y ¢	$\begin{aligned} & 15 x+18 y=795 \\ & -15 x \end{aligned}$
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of poun	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180 y ¢	$\begin{aligned} & 15 x+18 y=795 \\ & -15 x- \end{aligned}$
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{aligned} & \text { number } \\ & \text { of pound } \end{aligned}$	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180 y ¢	$\begin{aligned} & 15 x+18 y=795 \\ & -15 x-15 y \end{aligned}$
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
$\left.\left.\begin{array}{lccc} & \begin{array}{c}\text { number value per } \\ \text { of pounds }\end{array} \\ \text { pound }\end{array}\right) \begin{array}{c}\text { total } \\ \text { value }\end{array}\right)$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total value	$x+y=50$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of poun	value per pound	total value	$x+y=50$
brand A: x	$150 ¢$	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180y¢	$15 x+18 y=795$
mixture 50	159¢	$7950 ¢$	$\underline{-15 x-15 y=-750}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number	value per pound	total value	$x+y=50$
brand A: x	$150 ¢$	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180y¢	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180y¢	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	$\begin{gathered} \text { total } \\ \text { value } \end{gathered}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	$150 x+180 y=7950$
brand B: y	180¢	180y¢	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total value	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180yd	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathbf{y}=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total value	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180yd	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$y=15$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180yd	$\begin{aligned} 15 x+18 y & =795 \\ -15 x-15 y & =-750 \end{aligned}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180yd	$\begin{aligned} 15 x+18 y & =795 \\ -15 x-15 y & =-750 \end{aligned}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$
			x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

(e) $\begin{gathered}\text { number } \\ \text { of pounds }\end{gathered}$	value per pound	total value	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180yd	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$
			$\mathrm{x}+$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

(e) $\begin{gathered}\text { number } \\ \text { of pounds }\end{gathered}$	value per pound	total value	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180yd	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$
			$x+15$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

, ${ }^{\text {number }}$	value per pound	total value	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	$150 ¢$	150x¢	
brand B: y	180¢	180y¢	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$
			$x+15=50$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

(e) $\begin{gathered}\text { number } \\ \text { of pounds }\end{gathered}$	value per pound	total	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	$150 ¢$	150x¢	
brand B: y	180¢	180y¢	$\begin{gathered} 15 x+18 y=795 \\ -15 x-15 y=-750 \end{gathered}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$
			$x+15=50$
			$\mathbf{x}=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

(e) $\begin{gathered}\text { number } \\ \text { of pounds }\end{gathered}$	value per pound	total value	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150x¢	
brand B: y	180¢	180y¢	$\begin{aligned} 15 x+18 y & =795 \\ -15 x-15 y & =-750 \end{aligned}$
mixture 50	159¢	7950¢	$3 \mathrm{y}=45$
			$\mathrm{y}=15$
			$x+y=50$
			$x+15=50$
			$\mathbf{x}=35$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person:
Second person:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?
First person: x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x Second person:
total $\frac{y}{200}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathrm{x}+
$$

First person: x Second person:
total $\frac{y}{200}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y
$$

First person: x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=
$$

First person: x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x Second person: y total 200

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person:
total $\frac{y}{200}$

$$
x+y=200
$$

$$
\mathrm{y}=
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total 200

$$
\begin{aligned}
& x+y=200 \\
& y=4 x
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x

$$
x+y=200
$$

$y=4 x-$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total 200

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total $200 \quad \mathrm{x}$

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total $\overline{200} \quad \mathrm{x}+$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

$$
\text { total } \quad \overline{200} \quad x+(4 x-25)
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
x+y=200
$$

$$
\text { total } \quad \overline{200}
$$

$$
x+(4 x-25)=
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
x+y=200
$$

$$
\text { total } \quad \overline{200} \quad x+(4 x-25)=200
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
x+y=200
$$

$$
\text { total } \quad \overline{200}
$$

$$
\begin{aligned}
& x+(4 x-25)=200 \\
& 5 x
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
x+y=200
$$

$$
\text { total } \quad \overline{200}
$$

$$
\begin{aligned}
& x+(4 x-25)=200 \\
& 5 x-
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
x+y=200
$$

$$
\text { total } \quad \overline{200}
$$

$$
\begin{aligned}
& x+(4 x-25)=200 \\
& 5 x-25
\end{aligned}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
x+y=200
$$

$$
\text { total } \quad \overline{200}
$$

$$
\begin{gathered}
x+(4 x-25)=200 \\
5 x-25=
\end{gathered}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \\
& \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \\
& \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 \\
5 \mathrm{x}
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \begin{array}{c}
x+(4 x-25)=200 \\
5 x-25=200 \\
5 x
\end{array} \\
&
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \\
& \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 \\
5 \mathrm{x}=225
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \\
& \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 \\
5 \mathrm{x}=225
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y

$$
y=4 x-25
$$

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \begin{array}{c}
\mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 \\
5 \mathrm{x}=225 \\
\\
\\
\end{array} \\
\mathbf{x}=
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y

$$
y=4 x-25
$$

$$
\begin{array}{cc}
\text { total } & \overline{200} \quad \begin{array}{c}
\mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 \\
5 \mathrm{x}=225 \\
\\
\\
\\
\end{array} \begin{array}{c}
\mathbf{x}=\mathbf{4 5}
\end{array}
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
+(4 x-25)=2 \\
5 x-25=200 \\
5 x=225 \\
x=45
\end{gathered}
$$

$$
\text { total } \quad \overline{200} \quad x+(4 x-25)=200 \quad y=4 x-25
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
(4 x-25)=2 \\
x-25=200 \\
5 x=225 \\
\mathbf{x}=45
\end{gathered}
$$

$$
\begin{array}{cl}
\text { total } \quad \overline{200} \quad x+(4 x-25)=200 & y=4 x-25 \\
5 x-25=200 & y=
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
(4 x-25)=2 \\
x-25=200 \\
5 x=225 \\
\mathbf{x}=45
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { total } \quad \overline{200} \quad \begin{array}{cc}
x+(4 x-25)=200 & y \\
5 x-25=200 & y \\
& \\
& \\
& x=225
\end{array} &
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
(4 x-25)=2 \\
x-25=200 \\
5 x=225 \\
\mathbf{x}=45
\end{gathered}
$$

$$
\begin{array}{ccl}
\text { total } & \overline{200} & \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 & \mathrm{y}=4 \mathrm{x}-25 \\
& & \mathrm{y}=180-25
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
(4 x-25)=2 \\
x-25=200 \\
5 x=225 \\
\mathbf{x}=45
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { total } & \overline{200} & \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 & \mathrm{y}=4 \mathrm{x}-25 \\
& 5 \mathrm{x}=225 & \mathrm{y}=180-25 \\
& \mathrm{y}=
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
(4 x-25)=2 \\
x-25=200 \\
5 x=225 \\
\mathbf{x}=45
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { total } & \overline{200} & \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 & \mathrm{y}=4 \mathrm{x}-25 \\
& 5 \mathrm{x}=225 & \mathrm{y}=180-25 \\
& \mathrm{y}=\mathbf{1 5 5}
\end{array}
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{gathered}
x+y=200 \\
y=4 x-25 \\
(4 x-25)=2 \\
x-25=200 \\
5 x=225 \\
\mathbf{x}=45
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { total } & \overline{200} & \mathrm{x}+(4 \mathrm{x}-25)=200 \\
5 \mathrm{x}-25=200 & \mathrm{y}=4 \mathrm{x}-25 \\
& 5 \mathrm{x}=225 & \mathrm{y}=180-25 \\
& \mathbf{y}=\mathbf{1 5 5}
\end{array}
$$

One person received $\$ 45$, and the other received $\$ 155$.

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
first:
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first:
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: x
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: x
second: y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: x
second: y
total

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: x
second: y
total \$5000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
X
invested
first: x
second: y
total \$5000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
\mathrm{x}+
$$

first: X
second: y
total \$5000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
x+y
$$

first: x
second: y
total \$5000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
x+y=
$$

first: x
second: y
total \$5000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
x+y=5000
$$

first: x
second: y
total \$5000

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount interest
invested rate
first: x
second: y
total \$5000

$$
x+y=5000
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount interest
invested rate
first: x 3\%
second: y
total \$5000

$$
x+y=5000
$$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	$x+y=5000$
first: x	3\%	
second: y	4\%	
total \$5000		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate
first:	interest	
earned		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\$ 5000$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interest earned	$x+y=5000$
first: X	3\%	.03x	
second: y	4\%	.04y	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first: x	3%	.03 x	$\mathrm{x}+\mathrm{y}=5000$
second:	y	4%	.04 y
total	$\$ 5000$		

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	x	3%	.03 x
second:	y	4%	$\underline{.04 \mathrm{y}}$
total	$\$ 5000$		$\overline{\$ 185}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{rccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{l}\text { interest } \\ \text { earned }\end{array} \\ \text { first: } & \mathrm{x} & 3 \% & .03 \mathrm{x}\end{array}\right] .03 \mathrm{x}+\mathrm{y}=5000$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{rccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{l}\text { interest } \\ \text { earned }\end{array} \\ \text { first: } & \mathrm{x} & 3 \% & .03 \mathrm{x}\end{array}\right] .03 \mathrm{x}+\mathrm{y}=5000$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{rccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{l}\text { interest } \\ \text { earned }\end{array}\end{array}\right] .03 \mathrm{x}+.04 \mathrm{y}, \mathrm{y}=5000$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{rccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{l}\text { interest } \\ \text { earned }\end{array}\end{array}\right] .03 \mathrm{x}+.04 \mathrm{y}=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{rccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{c}\text { interest } \\ \text { earned }\end{array} \\ \text { first: } & \mathrm{x} & 3 \% & .03 \mathrm{x}\end{array}\right] .03 \mathrm{x}+.04 \mathrm{y}=185$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

first. ${ }^{\substack{\text { amount } \\ \text { invested }}}$	interest rate 3%	interest earned 03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	
second: y	4\%	.04y	3 x
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
\(\left.$$
\begin{array}{rccc} & \begin{array}{c}\text { amount } \\
\text { invested }\end{array} & \begin{array}{c}\text { interest } \\
\text { rate }\end{array}
$$ \& \begin{array}{c}interest

earned\end{array}\end{array}\right]\)| $\mathrm{x}+\mathrm{y}=5000$ |
| :---: |
| first: x | | 3% |
| :---: |
| second: |
| y |
| total |
| $\$ 5000$ |

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	interes rate 3%	interest earned 03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 x+4 y$
second: y	4\%	.04y	$3 \mathrm{x}+4 \mathrm{y}$
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	interes rate 3%	interest earned	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: x	3\%	.03x	
second: y	4\%	.04y	
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	interes rate 3%	interest earned 03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 x+4 y=18,500$
second: y	4\%	.04y	$3 x+4 y=18,500$
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interest earned	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 x+4 y=18,500$
second: y	4\%	.04y	$-3 x$
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interest earned	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 x+4 y=18,500$
second: y	4\%	.04y	-3x-
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interest earned	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 \mathrm{x}+4 \mathrm{y}=18,500$
second: y	4\%	.04y	$-3 x-3 y$
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	$\begin{gathered} \text { interest } \\ \text { rate } \end{gathered}$	interest earned	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 \mathrm{x}+4 \mathrm{y}=18,500$
second: y	4\%	.04y	$\begin{aligned} 3 x+4 y & =18,500 \\ -3 x-3 y & =\end{aligned}$
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interest earned	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: x	3\%	.03x	
second: y	4\%	.04y	$\begin{array}{r} 3 x+4 y=18,500 \\ -3 x-3 y=-15,000 \end{array}$
total \$5000		\$185	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{rccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} \\ \text { first: } & \mathrm{x}\end{array} \begin{array}{c}\text { interest } \\ \text { earned }\end{array}\right)$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	x	3%	.03 x
second:	y	4%	$\underline{.04 \mathrm{y}}$
total	$\$ 5000$		$\underline{\$ 185}$

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
-3 x-3 y=-15,000
\end{gathered}
$$

y

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	interest rate 3\%	interest earned 03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: X	3\%	.03x	$3 x+4 y=18,500$
second: y	4\%	. 04 y	$-3 x-3 y=-15,000$
total \$5000		\$185	
			$\mathbf{y}=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	interest rate 3\%	interest earned .03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
second: y	4\%	.04y	$\begin{array}{r} 3 x+4 y=18,500 \\ -3 x-3 y=-15,000 \end{array}$
total \$5000		\$185	$\mathbf{y}=\mathbf{3 , 5 0 0}$
			$x+y=5000$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	x	3%	.03 x
second:	y	4%	$\underline{.04 \mathrm{y}}$
total	$\$ 5000$		$\boxed{\$ 185}$

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
-3 x-3 y=-15,000 \\
\hline \mathbf{y}=\mathbf{3 , 5 0 0} \\
x+y=5000
\end{gathered}
$$

x

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	$\begin{gathered} \text { interest } \\ \text { rate } \\ 3 \% \end{gathered}$	interest earned .03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
second: y	4\%	.04y	$\begin{aligned} 3 x+4 y & =18,500 \\ -3 x-3 y & =-15,000 \end{aligned}$
total \$5000		\$185	$\mathbf{y}=\mathbf{3 , 5 0 0}$
			$x+y=5000$
			$\mathrm{x}+$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

invested first: x	$\begin{gathered} \text { interest } \\ \text { rate } \\ 3 \% \end{gathered}$	interest earned .03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
second: y	4\%	.04y	$\begin{aligned} 3 x+4 y & =18,500 \\ -3 x-3 y & =-15,000 \end{aligned}$
total \$5000		\$185	$\mathbf{y}=\mathbf{3 , 5 0 0}$
			$\begin{aligned} & x+y=5000 \\ & x+3500 \end{aligned}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

first: x second: \qquad total $\$ 5000$		$\begin{gathered} \text { interest } \\ \text { rate } \\ 3 \% \end{gathered}$	$\begin{aligned} & \text { interest } \\ & \text { earned } \\ & .03 \mathrm{x} \end{aligned}$	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
		4\%	.04y	$3 x+4 y=18,500$
			\$185	$\underline{-3 x-3 y=-15,000}$
				$\mathbf{y}=\mathbf{3 , 5 0 0}$
				$x+y=5000$
				$x+3500=$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{cccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{c}\text { interest } \\ \text { earned }\end{array} \\ \text { first: } & \mathrm{x} & 3 \% & .03 \mathrm{x}\end{array}\right)$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	$\begin{gathered} \text { interest } \\ \text { rate } \\ 3 \% \end{gathered}$	interest earned .03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
second: y	4\%	.04y	$\begin{array}{r} 3 x+4 y=18,500 \\ -3 x-3 y=-15,000 \end{array}$
total \$5000		\$185	$\mathbf{y}=\mathbf{3 , 5 0 0}$
			$\begin{gathered} x+y=5000 \\ x+3500=5000 \end{gathered}$
			$\mathbf{x}=1500$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
$\left.\begin{array}{cccc} & \begin{array}{c}\text { amount } \\ \text { invested }\end{array} & \begin{array}{c}\text { interest } \\ \text { rate }\end{array} & \begin{array}{c}\text { interest } \\ \text { earned }\end{array} \\ \text { first: } & \mathrm{x} & 3 \% & .03 \mathrm{x}\end{array}\right)$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
first:
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

volume

of solution first:
second:

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

```
            volume
    of solution
first: x
second:
```


General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

```
            volume
            of solution
        first: x
second: y
```


General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

	volume of solution
first:	x
second:	y
total	

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

volume of solution	
first:	x
second:	$\frac{\mathrm{y}}{50 \mathrm{cc}}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
of solution first: x
second: $\frac{y}{50 \mathrm{cc}}$
total

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
x +
volume
of solution
first: x
second: $\frac{\mathrm{y}}{\text { total }} \frac{50 \mathrm{cc}}{}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
x+y
$$

volume
of solution
first: x
second: $\frac{\mathrm{y}}{50 \mathrm{cc}}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
x+y=
$$

volume
of solution
first: x
second: $\frac{\mathrm{y}}{\text { total }} \frac{50 \mathrm{cc}}{}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
x+y=50
$$

volume
of solution
first: x
second: $\frac{\mathrm{y}}{50 \mathrm{cc}}$

General Algebra 2 CWS \#4 Unit 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
x+y=50
$$

```
volume percent
of solution acid
``` first: x
second: \(\frac{y}{50 \mathrm{cc}}\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\[
x+y=50
\]
\begin{tabular}{rlr}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} \\
first: & x & \(35 \%\) \\
second: & y & \\
total & 50 cc &
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\[
x+y=50
\]
\begin{tabular}{rcr}
& \begin{tabular}{rl}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} \\
first:
\end{tabular}\(\quad \mathrm{x} \quad 35 \%\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(\mathbf{2 5 \%}\) acid?
\[
x+y=50
\]
\begin{tabular}{rcc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} \\
first: & X & \(35 \%\) \\
second: & y & \(10 \%\) \\
total & \(\frac{50 \text { cc }}{}\) & \(25 \%\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\[
x+y=50
\]
\begin{tabular}{rcc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} \\
first: & x & \(35 \%\) \\
second: & y & \(10 \%\) \\
total & \(\frac{50 \mathrm{cc}}{}\) & \(25 \%\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\[
x+y=50
\]
\begin{tabular}{rccc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \\
total & \(\frac{50 \mathrm{cc}}{}\) & \(25 \%\) &
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\[
x+y=50
\]
\begin{tabular}{rccc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & .10 y \\
total & \(\frac{50 \mathrm{cc}}{}\) & \(25 \%\) &
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(\mathbf{2 5 \%}\) acid?
\[
x+y=50
\]
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & .10 y \\
total & 50 cc & \(25 \%\) &
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(\mathbf{2 5 \%}\) acid?
\[
x+y=50
\]
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\[
x+y=50
\]
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(\mathbf{2 5 \%}\) acid?
\[
x+y=50
\]
\begin{tabular}{rccl}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(\mathbf{2 5 \%}\) acid?
\[
x+y=50
\]
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccl}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{l}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & .10 y \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(\mathbf{2 5 \%}\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: x & \(35 \%\) & .35 x \\
second: & \(\frac{\mathrm{y}}{}\) & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{cccc}
& \multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} \\
first: & x & \(35 \%\) & \begin{tabular}{l}
volume \\
of acid
\end{tabular} \\
second: & y & \(10 \%\) & \(\underline{.35 \mathrm{x}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rlllc}
& \begin{tabular}{c}
volume \\
of solution
\end{tabular} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} & \(.35 \mathrm{x}+.10 \mathrm{y}=12.5\) \\
first: & x & \(35 \%\) & .35 x & \(35 \mathrm{x}+10 \mathrm{y}=1250\) \\
second: & y & \(10 \%\) & .10 y & \(-10 \mathrm{x}-10 \mathrm{y}=-500\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\) & \(25 \mathrm{x}=\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\overline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-\frac{10 x-10 y=-500}{25 x}=750
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0}
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0} \\
x+y=50
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0} \\
x+y=50 \\
30
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0} \\
x+y=50 \\
30+
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0} \\
x+y=50 \\
30+y
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0} \\
x+y=50 \\
30+y=
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
x=30 \\
x+y=50 \\
30+y=50
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
x=30 \\
x+y=50 \\
30+y=50 \\
y=
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50cc of a solution that is \(25 \%\) acid?
\begin{tabular}{rccc}
\multicolumn{2}{c}{\begin{tabular}{c}
volume \\
of solution
\end{tabular}} & \begin{tabular}{c}
percent \\
acid
\end{tabular} & \begin{tabular}{c}
volume \\
of acid
\end{tabular} \\
first: & x & \(35 \%\) & .35 x \\
second: & y & \(10 \%\) & \(\underline{.10 \mathrm{y}}\) \\
total & \(\overline{50 \mathrm{cc}}\) & \(25 \%\) & \(\underline{12.5 \mathrm{cc}}\)
\end{tabular}
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0} \\
x+y=50 \\
30+y=50 \\
y=\mathbf{2 0}
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is \(35 \%\) acid and another that is \(10 \%\) acid. How much of each solution should she use to make 50 cc of a solution that is \(25 \%\) acid?
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
volume \\
of solution
\end{tabular} & percent acid & \begin{tabular}{l}
volume \\
of acid
\end{tabular} & \(.35 x+.10 y=12.5\) \\
\hline first: & X & 35\% & . 35 x & \(35 x+10 y=1250\) \\
\hline second: & y & 10\% & . 10 y & \(-10 x-10 y=-500\) \\
\hline total & 50 cc & 25\% & 12.5 cc & \(25 \mathrm{x}=750\) \\
\hline & & & & \(\mathbf{x}=30\) \\
\hline
\end{tabular}

She should use 30 cc of the \(35 \%\) solution and 20 cc of the \(\mathbf{1 0 \%}\) solution.
\[
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-10 x-10 y=-500 \\
\hline 25 x=750 \\
\mathbf{x}=\mathbf{3 0}
\end{gathered}
\]
\[
x+y=50
\]
\[
30+y=50
\]
\[
\mathbf{y}=\mathbf{2 0}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
burger:
fries:

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?

> cost
> each
burger:
fries:

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?

> cost
> each
burger: \(\quad \mathrm{x} \not \subset\)
fries:

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
```

cost
each

```
burger: \(\mathrm{x} \not \subset\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\begin{tabular}{ll}
& \(6 x\) \\
cost \\
each \\
x \(\notin\) \\
\(y \notin\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\begin{tabular}{ll}
& \(6 x+\) \\
cost \\
each \\
x申 \\
yф & \\
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y
\]
cost
each
burger: \(\mathrm{x} \varnothing\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=
\]
cost
each
burger: \(\mathrm{x} \not \subset\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
burger: \(\mathrm{x} \not \subset\)
fries: \(y 申\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
```

cost
3x

```
burger: \(\mathrm{x} \varnothing\)
fries: y \(\not \subset\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
\(3 \mathrm{x}+\)
burger: \(\mathrm{x} \not \subset\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad \mathrm{x} \varnothing\)
fries: \(\quad\) у \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y= \\
\text { each } & 3 x+
\end{array}
\]
burger: \(\mathrm{x} \varnothing\)
fries: y \(\not \subset\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad \mathrm{x} \not \subset\)
fries: \(\quad\) у \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(\mathrm{x} \not \subset\) 30x
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(\mathrm{x} \notin \quad 30 \mathrm{x}+\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(x \notin \quad 30 x+20 y\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(x \notin \quad 30 x+20 y=\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+
\end{array}
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: y \(\varnothing\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(\quad x \not \subset \quad 30 x+20 y=4350\)
fries: \(\quad \mathrm{y} \varnothing \quad-12 \mathrm{x}\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \notin \quad-12 x-\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(x \notin \quad 30 x+20 y=4350\)
fries: \(y 申 \quad-12 x-20 y\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \notin \quad-12 x-20 y=\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \notin \quad-12 x-20 y=-2640\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(\quad x \not \subset \quad 30 x+20 y=4350\)
fries: \(y \subset \quad-12 x-20 y=-2640\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \varnothing \quad-12 x-20 y=-2640\)
18x

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(x \notin \quad 30 x+20 y=4350\)
fries: \(\quad \mathrm{y} \notin \quad-12 \mathrm{x}-20 \mathrm{y}=-2640\)
\(18 \mathrm{x}=\)

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
\[
3 x+5 y=660
\]
burger: \(x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \notin \quad-12 x-20 y=-2640\)
\[
18 x=1710
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \varnothing \quad-12 x-20 y=-2640\)
\[
18 x=1710
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \varnothing \quad-12 x-20 y=-2640\)
\[
\begin{aligned}
18 \mathrm{x} & =1710 \\
\mathbf{x} & =
\end{aligned}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad x \notin \quad 30 x+20 y=4350\)
fries: \(\quad y \varnothing \quad-12 x-20 y=-2640\)
\[
\begin{aligned}
18 \mathrm{x} & =1710 \\
\mathbf{x} & =\mathbf{9 5}
\end{aligned}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: \(\quad \mathrm{x} \not \subset\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: \(\quad\) у \(\varnothing\)
\[
\begin{aligned}
-12 x-20 y & =-2640 \\
18 x & =1710 \\
\mathbf{x} & =\mathbf{9 5}
\end{aligned}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+2
\end{array}
\]
burger: x \(\varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: \(\quad\) у \(\varnothing\)
\[
\begin{gathered}
-12 x-20 y=-2640 \\
18 x=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+2
\end{array}
\]
burger: x \(\varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: \(\quad\) y \(\varnothing\)
\[
\begin{aligned}
-12 x-20 y & =-2640 \\
18 x & =1710 \\
\mathbf{x} & =\mathbf{9 5}
\end{aligned}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+2
\end{array}
\]
burger: x \(\varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: y \(\varnothing\)
\[
\begin{gathered}
-12 x-20 y=-2640 \\
18 x=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
\]
burger: x \(\varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: \(y \not \subset\)
\[
\begin{gathered}
-12 x-20 y=-2640 \\
18 x=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+2
\end{array}
\]
burger: x \(\varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: y \(\varnothing\)
\[
\begin{gathered}
-12 x-20 y=-2640 \\
18 x=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{gathered}
\]
\[
-6 x-10 y=-1320
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+2
\end{array}
\]
burger: \(\quad \mathrm{x} \not \subset\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: y \(\varnothing\)
\[
\begin{gathered}
-12 x-20 y=-2640 \\
\hline 18 \mathrm{x}=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{gathered}
\]
\[
-6 x-10 y=-1320
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
burger: \(\mathrm{x} \varnothing\)
\[
30 x+20 y=4350
\]
\[
-12 x-20 y=-2640
\]
\[
18 x=1710
\]
\[
x=95
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
burger: \(\mathrm{x} \varnothing\)
\[
30 x+20 y=4350
\]
\[
\frac{-12 x-20 y=-2640}{18 x=1710} \quad \frac{-6 x-10 y=}{-6 y=}
\]
\[
x=95
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
cost
each
burger: \(\mathrm{x} \varnothing\)
\[
30 x+20 y=4350
\]
\[
-12 x-20 y=-2640
\]
\[
18 x=1710
\]
\[
x=95
\]
\begin{tabular}{rl}
\(6 x+4 y\) & \(=870\) \\
\(-6 x-10 y\) & \(=-1320\) \\
\hline\(-6 y\) & \(=-450\)
\end{tabular}

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { cost } \\
\text { each }
\end{array}
\end{aligned} \quad 3 x+5 y=660
\]
burger: \(\mathrm{x} \varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: y \(\varnothing\)
\[
\begin{array}{ccc}
\frac{-12 x-20 y=-2640}{18 x}=1710 \\
& & -6 x-10 y=-132 \\
\mathbf{x}=\mathbf{9 5} & \mathbf{y}
\end{array}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { cost } \\
\text { each }
\end{array}
\end{aligned} \quad 3 x+5 y=660
\]
burger: \(\mathrm{x} \varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: y \(\varnothing\)
\[
\begin{array}{cc}
\frac{-12 x-20 y=-2640}{18 x}=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{array} \quad \begin{gathered}
-6 x-10 y=-1320 \\
\cline { 1 - 2 }=-6 y=-450 \\
y
\end{gathered}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

\section*{10. Six burgers and four orders of fries cost \(\$ 8.70\). Three} burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
6 x+4 y=870
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { cost } \\
\text { each }
\end{array}
\end{aligned} \quad 3 x+5 y=660
\]
burger: \(\mathrm{x} \varnothing\)
\[
30 x+20 y=4350
\]
\[
6 x+4 y=870
\]
fries: y \(\varnothing\)
\[
\begin{array}{cc}
-12 x-20 y=-2640 \\
\hline 18 x=1710 \\
\mathbf{x}=\mathbf{9 5}
\end{array} \quad \begin{aligned}
-6 x-10 y & =-132 \\
y & =-450 \\
y & =75
\end{aligned}
\]

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?
\[
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+
\end{array}
\]
burger: \(\mathrm{x} \not \subset\)
fries: y \(\not \subset\)
\[
\begin{aligned}
& 30 x+20 y=4350 \\
& 6 x+4 y=870 \\
& -12 x-20 y=-2640 \\
& 18 \mathrm{x}=1710 \\
& \mathrm{x}=95 \\
& \begin{aligned}
-6 x-10 y & =-1320 \\
\hline-6 y & =-450 \\
y & =75
\end{aligned}
\end{aligned}
\]

A burger costs \(95 ¢\) each, and an order of fries costs \(75 申\) each.

\section*{General Algebra 2 CWS \#4 Unit 3}

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost \(\$ 8.70\). Three burgers and five orders of fries cost \(\mathbf{\$ 6 . 6 0}\). How much does each item cost?

\section*{Good luck on your homework !!}
burger: \(\mathrm{x} \notin\)
\[
\begin{aligned}
& 30 x+20 y=4350 \\
& 6 x+4 y=870 \\
& -12 x-20 y=-2640 \quad-6 x-10 y=-1320 \\
& 18 \mathrm{x}=1710 \\
& -6 y=-450 \\
& y=75
\end{aligned}
\]
fries: y \(\varnothing\)

A burger costs \(95 \not \subset\) each, and an order of fries costs \(75 \varnothing\) each.```

