General Algebra 2 Lesson #3 Unit 3 Class Worksheet #3 For Worksheets #3 & #4

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms.

1.
$$5x + 3y = 29$$

x ó $3y = -5$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$
> $5x + 3y = 29$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$
> $5x + 3y = 29$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$
 $5x + 3y = 29$
x ó $3y = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$
5x + $3y = 29$
x ó $3y = -5$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x $63y = -5$
> $5x + 3y = 29$
x $63y = -5$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$
> $5x + 3y = 29$
x ó $3y = -5$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x $63y = -5$
 $5x + 3y = 29$
x $63y = -5$
 $6x$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x =$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x ó $3y = -5$
 $5x + 3y = 29$
x ó $3y = -5$
 $6x = 24$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x $63y = -5$
 $5x + 3y = 29$
x $63y = -5$
 $6x = 24$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

x 6 3y = -5
$$5x + 3y = 29$$

x 6 3y = -5
$$6x = 24$$

x

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x =$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$
$$x \circ 3y = -5$$
$$5x + 3y = 29$$
$$x \circ 3y = -5$$
$$6x = 24$$
$$x = 4$$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 100$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 54$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 54$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Notice that the x terms are opposite. Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 54$
 y

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Notice that the x terms are opposite. Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 54$
 $y = 54$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Notice that the x terms are opposite. Add the equations.

Now, solve for y.
Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 54$
 $y = 3$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Notice that the x terms are opposite. Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

1.
$$5x + 3y = 29$$

 $x \circ 3y = -5^{-5}$
 $5x + 3y = 29$
 $x \circ 3y = -5$
 $6x = 24$
 $x = 4$
 $y = 3$
 $5x + 3y = 29$
 $-5x + 15y = 25$
 $18y = 54$
 $y = 3$

To solve for x, we must eliminate the y terms. Bring down the top equation. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -5.

Notice that the x terms are opposite. Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $2x \text{ ó } y = 12$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $2x { o } y = 12$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $2x ext{ o } y = 12$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

2x ó $y = 12$

Ŀ

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $2x \circ y = 12$
 $4x + 5y = 10$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $2x \circ y = 12$
 $4x + 5y = 10$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 2x 6 y = 12$
 $4x + 5y = 10$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 2x 6 y = 12$
 $4x + 5y = 10$
 $10x$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 2x 6 y = 12$
 $4x + 5y = 10$
 $10x 6$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
10x ó 5y

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
10x $65y = 10$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
10x $65y = 60$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 2x 6 y = 12$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x 6 5y = 60$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 2x 6 y = 12$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x 6 5y = 60$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
10x $65y = 60$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

$$5 \quad 2x \quad 6 \quad y = 12$$

$$4x + 5y = 10$$

$$4x + 5y = 10$$

$$10x \quad 6 \quad 5y = 60$$

$$14x$$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

$$5 \quad 2x \quad 6 \quad y = 12$$

$$4x + 5y = 10$$

$$4x + 5y = 10$$

$$10x \quad 6 \quad 5y = 60$$

$$14x = 10$$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
10x $65y = 60$
 $14x = 70$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
4x + 5y = 10
10x { ó } 5y = 60
 $14x = 70$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
4x + 5y = 10
10x \text{ ó } 5y = 60
14x = 70
x

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

$$5 \quad 2x \quad 6 \quad y = 12$$

$$4x + 5y = 10$$

$$4x + 5y = 10$$

$$10x \quad 6 \quad 5y = 60$$

$$14x = 70$$

$$x =$$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \text{ ó } y = 12$
4x + 5y = 10
4x + 5y = 10
10x \text{ ó } 5y = 60
 $14x = 70$
 $x = 5$

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 \quad 2x \quad 6 \quad y = 12$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x \quad 6 \quad 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 \quad 2x \quad 6 \quad y = 12$
 $4x + 5y = 10$
 $10x \quad 6 \quad 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

5 $2x \circ y = 12$
4 $x + 5y = 10$
4 $x + 5y = 10$
10 $x \circ 5y = 60$
14 $x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite.

Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite.

Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.
Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 + 2x + 5y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 5y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y = -14$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y = -14$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y = -14$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y = -14$
 $y = 10$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 - 2x + 6y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y = -14$
 $y = -2$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

2.
$$4x + 5y = 10$$

 $5 + 2x + 5y = 12^{-2}$
 $4x + 5y = 10$
 $4x + 5y = 10$
 $10x + 5y = 60$
 $14x = 70$
 $x = 5$
 $y = -2$
 $4x + 5y = 10$
 $-4x + 2y = -24$
 $7y = -14$
 $y = -2$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$6x + 5y = 13$$

 $3x \circ 2y = -16$

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms.

3.
$$6x + 5y = 13$$

 $3x \circ 2y = -16$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$6x + 5y = 13$$

 $3x \circ 2y = -16$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$\frac{2}{3x + 5y} = 13$$

 $3x \circ 2y = -16$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $3x 6 2y = -16$
 $12x$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $3x 6 2y = -16$
 $12x + 12x + 12$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $3x 6 2y = -16$
 $3x + 10y$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $3x 6 2y = -16$
 $3x + 10y = 12x + 10y = 100$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $3x 6 2y = -16$
 $3x + 10y = 26$

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $3x 6 2y = -16$
 $3x 12x + 10y = 26$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$\frac{2}{5} 6x + 5y = 13$$

5 3x 6 2y = -16
12x + 10y = 26

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 3x 6 2y = -16
12x + 10y = 26
15x 6

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 3x 6 2y = -16
12x + 10y = 26
15x 6 10y

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 3x 6 2y = -16
12x + 10y = 26
15x 6 10y =

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16$
12x + 10y = 26
15x 6 10y = -80

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16$
12x + 10y = 26
15x 6 10y = -80

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x =$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16$
212x + 10y = 26
15x 6 10y = -80
27x = 54
X

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16$
212x + 10y = 26
15x 6 10y = -80
27x = 54
x =

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by 5. Notice that the y terms are opposite. Add the equations. Now, solve for x.
Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16$
212x + 10y = 26
15x 6 10y = -80
27x = 54
x = 2

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16$
212x + 10y = 26
15x 6 10y = -80
27x = 54
x = 2

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom

equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom

equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $y = 2$
 $6x + 5y = 13$
 $-6x + 4y = 32$
 $9y$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $y = 2$
 $6x + 5y = 13$
 $-6x + 4y = 32$
 $9y = 10$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $y = 45$
 $y = 45$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $y = 45$
 $y = 45$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$
 y
 y

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

5 $3x 6 2y = -16^{-2}$
4 $12x + 10y = 26$
5 $15x 6 10y = -80$
27x = 54
5 $y = 45$
5 $y = 45$
5 $y = 45$
5 $y = 13$
9 $y = 45$
5 $y = 13$
5 $y = 45$
5 $y = 13$
5 $y = 45$
5 $y = 13$
5 y

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$
 $y = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

3.
$$2 6x + 5y = 13$$

 $5 3x 6 2y = -16^{-2}$
 $12x + 10y = 26$
 $15x 6 10y = -80$
 $27x = 54$
 $x = 2$
 $y = 5$
 $6x + 5y = 13$
 $-6x + 4y = 32$
 $9y = 45$
 $y = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$4x + y = 3$$

 $3x \circ 2y = 16$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$4x + y = 3$$

 $3x \circ 2y = 16$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$4x + y = 3$$

 $3x \circ 2y = 16$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$\frac{2}{3x + y} = 3$$

 $3x \circ 2y = 16$

4

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $8x$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $8x +$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y =$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $3x + 2y = 6$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x \circ 2y = 16$
 $8x + 2y = 6$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x \circ 2y = 16$
 $8x + 2y = 6$
 $3x \circ 2y = 16$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.
Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x \circ 2y = 16$
 $8x + 2y = 6$
 $3x \circ 2y = 16$
 $11x$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x =$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 - 4x + y = 3$$

 $3x \circ 2y = 16$
 $8x + 2y = 6$
 $3x \circ 2y = 16$
 $11x = 22$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x \circ 2y = 16$
 $8x + 2y = 6$
 $3x \circ 2y = 16$
 $11x = 22$

X

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$
 $x =$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3}$$

 $3x 6 2y = 16^{3}$
 $8x + 2y = 6^{3}$
 $3x 6 2y = 16^{3}$
 $11x = 22^{3}$
 $x = 2^{3}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3}$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3}$$

 $3x 6 2y = 16$
 $8x + 2y = 6$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3}$$

 $3x \circ 2y = 16$
 $3x \circ 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3}$$

 $3x \circ 2y = 16$
 $3x \circ 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3}$$

 $3x 6 2y = 16$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $3x 6 2y = 16$
 $3x 6 2y = 16$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4$$

 $3x 6 2y = 16^{4} 4$
 $8x + 2y = 6$
 $3x 6 2y = 16^{4} 4$
 $12x + 3y = 9^{4} -12x + 11x = 22$
 $x = 2^{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 4x + y = 3$$

 $3x 6 2y = 16$
 $3x 6 2y = 16$
 $3x 6 2y = 16$
 $12x + 3y = 9$
 $-12x + 8y$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4$$

 $3x 6 2y = 16^{4} 4$
 $11x = 22$
 $x = 2^{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4$$

 $3x \circ 2y = 16^{4} 4$
 $12x + 3y = 9^{4} 4$
 $-12x + 8y = -64^{4} 4$
 $11x = 22^{4} 4$
 $x = 2^{4} 4$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4$$

 $3x \circ 2y = 16^{4} 4$
 $8x + 2y = 6$
 $3x \circ 2y = 16^{4} 4$
 $12x + 3y = 9$
 $-12x + 8y = -64^{4} 4$
 $11x = 22$
 $x = 2^{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 - 4x + y = 3$$

 $3x \circ 2y = 16$
 $3x \circ 2y = 16$
 $3x \circ 2y = 16$
 $12x + 3y = 9$
 $-12x + 8y = -64$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 - 4x + y = 3$$

 $3x \circ 2y = 16$
 $3x \circ 2y = 16$
 $3x \circ 2y = 16$
 $12x + 3y = 9$
 $-12x + 8y = -64$
 $11x = 22$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 - 4x + y = 3 - 4$$

 $3x \circ 2y = 16 - 4$
 $12x + 3y = 9$
 $-12x + 8y = -64$
 $11y = -55$
 $x = 2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2^{2} 4x + y = 3^{3} 4x + y = 3^{3} 4x + y = 3^{4} 4x + y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

4.
$$2 + 4x + y = 3$$

 $3x \circ 2y = 16$
 $11x = 22$
 $x = 2$
 $y = -5$
 $12x + 3y = 9$
 $-12x + 8y = -64$
 $11y = -55$
 $y = -5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

5.
$$3x + 5y = 12$$

 $2x + 3y = 7$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

To solve for x, we must eliminate the y terms.

5.
$$3x + 5y = 12$$

 $2x + 3y = 7$
Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3x + 5y = 12$$

 $2x + 3y = 7$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$\frac{3}{2x} + 5y = 12$$

 $2x + 3y = 7$

L,

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 3x + 5y = 12$$

 $2x + 3y = 7$
 $9x$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 3x + 5y = 12$$

 $2x + 3y = 7$
 $9x + 3x + 3y = 7$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 - 3x + 5y = 12$$

 $2x + 3y = 7$
 $9x + 15y$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 - 3x + 5y = 12$$

 $2x + 3y = 7$
 $9x + 15y = 12$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 - 3x + 5y = 12$$

 $2x + 3y = 7$
 $9x + 15y = 36$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 3x + 5y = 12$$

 $2x + 3y = 7$
 $9x + 15y = 36$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 - 3x + 5y = 12$$

 $-5 - 2x + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 - 3x + 5y = 12$$

 $-5 - 2x + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = -1x = -12$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 - 3x + 5y = 12$$

 $-5 - 2x + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 -5 -3 -3 -1 = 12$$

 $-5 -5 -3 -3 -1 = 1$
 $-5 -5 -3 -1 = 1$
 $-5 -5 -3 -1 = 1$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 -5 -3 -5 -3 -1 = 12$$

 $-5 -5 -3 -1 = 1$
 $-5 -5 -3 -1 = 1$
 $-5 -5 -3 -1 = 1$
 $x -1 -5 -3 -1 = 1$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 -5 -5 -3x + 5y = 12$$

 $-5 -5 -2x + 3y = 7$
 $-5 -5 -2x + 3y = 7$
 $-5 -35 -1x = 1$
 $x = 1$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 -5 -3x + 5y = 12$$

 $-5 -5 -2x + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 -5 -5 -5 -5 -5 -5 -1 = 12^{-5} -5 -5 -1 = 12^{-5} -5 -1 = 1$$

 $9x + 15y = 36 -5 -1 = -35 -1 = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 = 3x + 5y = 12^{2}$$

 $-5 = 2x + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Multiply both sides of the top

equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 = 3x + 5y = 12^{2}$$

 $-5 = 2x + 3y = 7$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35^{-1}$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36^{-10x \circ 15y = -35}$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 = 3x + 5y = 12^{2}$$

 $-5 = 2x + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom

equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.
Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 = 3x + 5y = 12^{2}$$

 $-5 = 2x + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36^{-10x \circ 15y = -35}$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 = 3x + 5y = 12^{2}$$

 $-5 = 2x + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36^{-10x \circ 15y = -35}$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36^{-10x \circ 15y = -35}$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom

equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 y
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $y = x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2}$$

 $-5 + 2x + 3y = 7^{-3}$
 $9x + 15y = 36$
 $-10x \circ 15y = -35$
 $-1x = 1$
 $y = 3$
 $x = -1$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

5.
$$3 + 5y = 12^{2} + 3y = 7^{-3}$$

 $-5 + 2x + 3y = 7^{-3}$
 $y = 3$
 $y = 3$
 $y = 3$
 $x = -1$
 $y = 3$
 $x = -1$
 $y = 3$
 $x = -1$
 $y = 3$
 $y = 3$
 $x = -1$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $3x + 2y = 15$

Solve each of the following systems of equations using the **multiplication-addition method**.

6. x + 4y = -53x + 2y = 15 To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $3x + 2y = 15$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $3x + 2y = 15$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $3x + 2y = 15$
 $x + 4y = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $3x + 2y = 15$
 $x + 4y = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

-2 $3x + 2y = 15$
 $x + 4y = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 -3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -5$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$

X

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = -35$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by -2. Notice that the y terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by -2. Notice that the y terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.
Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 -3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 -3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x + 6 + 4y = -5$
 $-6x + 6 + 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$
 $-3x \circ 12y = 15$
 $3x + 2y = 15$
 $-10y = 10$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$
 $-3x \circ 12y = 15$
 $3x + 2y = 15$
 $-10y = 30$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$
 $-3x \circ 12y = 15$
 $3x + 2y = 15$
 $-10y = 30$
 y

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$
 $y =$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $-2 \quad 3x + 2y = 15^{-3}$
 $x + 4y = -5$
 $-6x \circ 4y = -30$
 $-5x = -35$
 $x = 7$
 $y = -3$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

6.
$$x + 4y = -5^{-3}$$

 $y = -3$
 $x = 7$
 $y = -3$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Multiply both sides of the bottom

equation by -2.

Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$2x \circ y = 12$$

 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms.

7.
$$2x \circ y = 12$$

 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$2x \circ y = 12$$

 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y =$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x =$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$

X

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = -25$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12^{3}$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12^{3}$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12 - 3$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12^{3}$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$
 $5x = -25$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12^{-3}$$

 $3x \circ 4y = 23$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12 -3 -2 -2 -3 = -2 -3 = -2 -3 = -2 -3 = -2 -5 = -25 = -25 = -25 = -25$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 \frac{3}{-2}$$

 $3x \circ 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 \frac{3}{-2}$$

 $3x \circ 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12 -3 -2 -2 -3 = -2 -3 = -3x \circ 4y = -48 = -48 = -5x = -25$$

• $-5x = -25 = -25 = -5x = -25 = -5x = -5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x 6 y = 12 \frac{3}{-2}$$

 $3x 6 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x 6 4y = 23$
 $-5x = -25$
 $x = 5$
 $5y$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 \frac{3}{-2}$$

 $3x \circ 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$
 $5y = 36$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 \frac{3}{-2}$$

 $3x \circ 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$
 $5y = -10$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 \frac{3}{-2}$$

 $3x \circ 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$
 $5y = -10$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 -3$$

 $-3x \circ 4y = 23 -2$
 $-8x + 4y = -48$
 $-5x = -25$
 $x = 5$
 $y = -10$
 $y = -46$
 $5y = -10$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 2x \circ y = 12 \frac{3}{-2}$$

 $3x \circ 4y = 23 \frac{-2}{-2}$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$
 $y = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

7.
$$-4 - 2x \circ y = 12 -2$$

 $3x \circ 4y = 23 -2$
 $-8x + 4y = -48$
 $3x \circ 4y = 23$
 $-5x = -25$
 $x = 5$
 $y = -2$
 $6x \circ 3y = 36$
 $-6x + 8y = -46$
 $5y = -10$
 $y = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -4. Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$4x \circ 5y = 17$$

 $x \circ 2y = 8$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$4x \circ 5y = 17$$

 $x \circ 2y = 8$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$4x \circ 5y = 17$$

 $x \circ 2y = 8$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{x \circ 5y} = 17$$

x $\circ 2y = 8$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{x \circ 5y} = 17$$

x $\circ 2y = 8$
 $8x$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{x \circ 5y} = 17$$

x $\circ 2y = 8$
8x \circ
Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x \circ 5y = 17$$

x $\circ 2y = 8$
> 8x $\circ 10y$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 6 5y = 17$$

x 6 2y = 8
> 8x 6 10y =

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \text{ ó } 5y = 17$$

x $6 2y = 8$
> $8x 6 10y = 34$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2^{2} 4x \text{ ó } 5y = 17$$

x $6^{2} 2y = 8$
> $8x 6 10y = 34$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{-5}$$
 4x ó 5y = 17
-5 x ó 2y = 8
8x ó 10y = 34

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{-5}$$
 4x ó 5y = 17
 $\frac{2}{-5}$ x ó 2y = 8
8x ó 10y = 34
 $-5x$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{-5}$$
 4x ó 5y = 17
-5 x ó 2y = 8
8x ó 10y = 34
-5x +

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \text{ ó } 5y = 17$$

 $-5 - x \text{ ó } 2y = 8$
 $3x \text{ ó } 10y = 34$
 $-5x + 10y$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{-5}$$
 4x ó 5y = 17
 $\frac{2}{-5}$ x ó 2y = 8
8x ó 10y = 34
 $-5x + 10y =$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

-5 $x 62y = 8$
> $8x 610y = 34$
> $-5x + 10y = -40$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

-5 $x 62y = 8$
> $8x 610y = 34$
> $-5x + 10y = -40$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

-5 $x 62y = 8$
> $8x 610y = 34$
> $-5x + 10y = -40$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{-5}$$
 4x ó 5y = 17
-5 x ó 2y = 8
8x ó 10y = 34
-5x + 10y = -40

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$\frac{2}{-5}$$
 4x 6 5y = 17
 $\frac{-5}{-5}$ x 6 2y = 8
8x 6 10y = 34
 $\frac{-5x + 10y = -40}{3x}$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x =$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \text{ ó } 5y = 17$$

 $-5 - x \text{ ó } 2y = 8$
 $3x = -6$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$
x

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = 10$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ o } 5y = 17$$

 $-5 - x ext{ o } 2y = 8$
 $8x ext{ o } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

 $-5 x 62y = 8$
 $8x 610y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

 $-5 x 62y = 8$
 $8x 610y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \circ 5y = 17$$

 $-5 - x \circ 2y = 8$
 $3x = -6$
 $x = -2$
 $4x \circ 5y = 17$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

 $-5 x 62y = 8$
 $-5 x 62y = 8$
 $-5 x 62y = 17$
 $-5 x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \circ 5y = 17$$

 $-5 - x \circ 2y = 8$
 $-5 - 5x \circ 2y = 8$
 $-5 - 5x \circ 2y = 8$
 $-5 - 5x + 10y = -40$
 $-5x + 10y = -40$
 $-4x \circ 5y = 17$
 $-4x \circ 5y = 17$
 $-4x \circ 5y = 17$
 $-4x \circ 5y = 17$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \circ 5y = 17$$

 $-5 - x \circ 2y = 8$
 $-5 - 5x \circ 2y = 8$
 $-5 - 5x \circ 2y = 8$
 $-5 - 5x + 10y = -40$
 $-5x + 10y = -40$
 $-4x + 3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x { o} 5y = 17$$

 $-5 - x { o} 2y = 8$
 $-5 - 5x { o} 2y = 8$
 $-5 - 5x { o} 2y = 8$
 $-5 - 5x { o} 2y = 34$
 $-5 - 5x { o} 10y = 34$
 $-5 - 5x { o} 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x {\circ} 5y = 17$$

 $-5 - x {\circ} 2y = 8$
 $-5 - 5x {\circ} 2y = 8$
 $-5 - 5x {\circ} 2y = 8$
 $-5 - 5x {\circ} 10y = 34$
 $-5 - 5x + 10y = -40$
 $-4x + 8y = 17$
 $-4x + 8y = 17$
 $-4x + 8y = 17$
 $-5x + 10y = -40$
 $-3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x {\circ} 5y = 17$$

 $-5 - x {\circ} 2y = 8$
 $-5 - 5x + 10y = -40$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x {\circ} 5y = 17$$

 $-5 - x {\circ} 2y = 8$
 $-5 - 5x + 10y = -40$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ of } 5y = 17$$

 $-5 - x ext{ of } 2y = 8$
 $-5 - 5x ext{ of } 2y = 34$
 $-5x + 10y = -40$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 4x 65y = 17$$

 $-5 x 62y = 8$
 $-5 x 62y = 8$
 $-5 x 62y = 17$
 $-5 x + 10y = -40$
 $-5 x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x \circ 5y = 17$$

 $-5 - x \circ 2y = 8$
 $-5 - 5x + 10y = -40$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.
Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ of } 5y = 17$$

 $-5 - x ext{ of } 2y = 8$
 $-5 - 5x ext{ of } 2y = 8$
 $-5x + 10y = -40$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ of } 5y = 17$$

 $-5 - x ext{ of } 2y = 8$
 $-5 - 5x ext{ of } 2y = 8$
 $-5x + 10y = -40$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ of } 5y = 17$$

 $-5 - x ext{ of } 2y = 8$
 $-5 - 5x ext{ of } 2y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$
 y

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ of } 5y = 17$$

 $-5 - x ext{ of } 2y = 8$
 $8x ext{ of } 10y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$
 $y =$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

8.
$$2 - 4x ext{ of } 5y = 17$$

 $-5 - x ext{ of } 2y = 8$
 $-5 - 5x ext{ of } 2y = 34$
 $-5x + 10y = -40$
 $3x = -6$
 $x = -2$
 $y = -5$
 $y = -5$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by -5. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation. Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3x + 7y = 6$$

x ó $3y = -2$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3x + 7y = 6$$

x ó $3y = -2$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3x + 7y = 6$$

x ó $3y = -2$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{3}3x + 7y = 6$$

x ó 3y = -2

4

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

x ó 3y = -2

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

x ó 3y = -2
9x +

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

x ó 3y = -2
 $9x + 21y$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

x ó 3y = -2
 $9x + 21y =$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

x ó 3y = -2
 $9x + 21y = 18$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

x ó 3y = -2
 $9x + 21y = 18$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7 x ó

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7 x ó 21y

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7 x ó 21y =

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7 x ó 21y = -14

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14
16x

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $yx + 21y = 18$
7 $x \circ 21y = -14$
16 $x = -2$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14
16x = 4

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14
16x = 4

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14
16x = 4

X

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$\frac{3}{7} 3x + 7y = 6$$

7 x ó 3y = -2
9x + 21y = 18
7x ó 21y = -14
16x = 4
x =

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
7 $x \circ 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $y + 21y = 18$
7 $x 6 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.
Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $y + 21y = 18$
7 $x 6 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation. Multiply both sides of the bottom equation by -3.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
 $7x 6 21y = -14$
 $16x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 x + 7y = 6$$

$$7 x 6 3y = -2$$

$$9x + 21y = 18$$

$$7x 6 21y = -14$$

$$16x = 4$$

$$x = \frac{1}{4}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
 $7x 6 21y = -14$
 $16x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
 $7x 6 21y = -14$
 $16x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
 $7x 6 21y = -14$
 $16x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
 $7x 6 21y = -14$
 $16x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x + 6 - 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
 $7 - 3x + 9y = 6$
 $3x + 7y = 6$
 $-3x + 9y = 6$
 $16x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation. Multiply both sides of the bottom equation by -3. Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 3x + 7y = 6$$

7 $x 6 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$
3 $x + 7y = 6$
-3 $x + 9y = 6$
16 y

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
7 $x \circ 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$
3 $x + 7y = 6$
-3 $x + 9y = 6$
16 $y = 16$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$
3 $x + 7y = 6$
-3 $x + 9y = 6$
16 $y = 12$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$
3 $x + 7y = 6$
-3 $x + 9y = 6$
16 $y = 12$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 + 7y = 6$$

7 x 6 3y = -2 -3
9x + 21y = 18
7x 6 21y = -14
16x = 4
x = $\frac{1}{4}$
9. $3x + 7y = 6$
-3x + 9y = 6
16y = 12
y

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
9 $x + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$
9 $y = \frac{3x + 7y = 6}{-3x + 9y = 6}$
16 $y = 12$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite. Add the equations. Now, solve for x. To solve for y, we must eliminate the x terms. Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 - 3x + 7y = 6$$

7 $x + 6 - 3y = -2$
9 $y + 21y = 18$
9 $y + 21y = -14$
16 $x = 4$
 $x = \frac{1}{4}$
 $y = \frac{3}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

9.
$$3 + 7y = 6$$

7 $x \circ 3y = -2$
9 $x + 21y = 18$
 $7 + 21y = -14$
 $7 + 21y = -14$
 $16x = 4$
 $x = \frac{1}{4}$
 $y = \frac{3}{4}$
 $y = \frac{3}{4}$
 $y = \frac{3}{4}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by 7. Notice that the y terms are opposite.

Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Bring down the top equation.

Multiply both sides of the bottom equation by -3.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

10.
$$4x + y = 1$$

 $3x + 2y = 0$

Solve each of the following systems of equations using the **multiplication-addition method**.

10. 4x + y = 13x + 2y = 0 To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

10.
$$4x + y = 1$$

 $3x + 2y = 0$

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

4

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

3x + 2y = 0

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

3x + 2y = 0
-8x ó

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

3x + 2y = 0
-8x \circ 2y

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. -2 4x + y = 13x + 2y = 0$$

→ -8x ó 2y =

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

3x + 2y = 0
-8x ó 2y = -2

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

3x + 2y = 0
-8x ó 2y = -2

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

3x + 2y = 0
-8x ó 2y = -2

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = 0$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation.
Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

X

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

 $\mathbf{x} =$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2. Bring down the bottom equation. Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3} 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3} 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3} 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. -2 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x 6 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. -2 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x 6 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. -2 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x 6 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. -2 4x + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$3 + \frac{2}{5}$$

$$3x + 2y = 1 + \frac{3}{-4}$$

$$-4 + \frac{3}{-4}$$

$$-12x + 3y = 3$$

$$-12x \circ 8y = 0$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$3x + 2y = 0$$

$$-5y$$

$$x = \frac{2}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$3x + 2y = 0$$

$$-5y = -2$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$3x + 2y = 0$$

$$-5y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$3x + 2y = 0$$

$$-5y = 3$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$y$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$y =$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

$$10. \frac{-2}{3x} + y = 1$$

$$3x + 2y = 0$$

$$-8x \circ 2y = -2$$

$$3x + 2y = 0$$

$$-5x = -2$$

$$x = \frac{2}{5}$$

$$3x + 2y = 0$$

$$y = \frac{-3}{5}$$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

10.
$$\frac{-2}{3} 4x + y = 1$$

 $3x + 2y = 0$
 $-8x 6 2y = -2$
 $3x + 2y = 0$
 $-5x = -2$
 $x = \frac{2}{5}$
 $y = \frac{-3}{5}$
 $y = \frac{-3}{5}$
 $y = \frac{-3}{5}$

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by -2.

Bring down the bottom equation.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -4.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $3x + y = 2$

Solve each of the following systems of equations using the **multiplication-addition method**.

11. $x \circ 4y = 3$ 3x + y = 2 To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $3x + y = 2$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $3x + y = 2$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $3x + y = 2$
 $x \circ 4y = 3$

To solve for x, we must eliminate the y terms. Bring down the top equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $3x + y = 2$
 $x \circ 4y = 3$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.
Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x$

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 3$

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y$

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 3$

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x =$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$

X

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$

 $\mathbf{x} =$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

4 $3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $-3x + 12y = -9$
 $3x + y = 2$
 $13y$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $-3x + 12y = -9$
 $3x + y = 2$
 $13y = 13$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $-3x + 12y = -9$
 $3x + y = 2$
 $13y = -7$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $-3x + 12y = -9$
 $3x + y = 2$
 $13y = -7$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 y

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $y = \frac{-3}{-3}$
 $-3x + 12y = -9$
 $3x + y = 2$
 $13y = -7$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Now, solve for y.
Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $y = -\frac{7}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

11.
$$x \circ 4y = 3$$

 $4 \quad 3x + y = 2$
 $x \circ 4y = 3$
 $12x + 4y = 8$
 $13x = 11$
 $x = \frac{11}{13}$
 $y = \frac{-7}{13}$
 $y = 2$
 $3x + y = 2$
 $13y = -7$
 $y = \frac{-7}{13}$

To solve for x, we must eliminate the y terms. Bring down the top equation. Multiply both sides of the bottom equation by 4.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by -3.

Bring down the bottom equation.

Notice that the x terms are opposite.

Add the equations.

Now, solve for y.

Solve each of the following systems of equations using the **multiplication-addition method**.

12.
$$2x + 3y = 4$$

 $3x { o } 2y = 5$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

To solve for x, we must eliminate the y terms.

12.
$$2x + 3y = 4$$

 $3x { o } 2y = 5$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2x + 3y = 4$$

 $3x \circ 2y = 5$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3x} + 3y = 4$$

3x ó 2y = 5

4

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2 - 2x + 3y = 4$$

3x ó 2y = 5
4x

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3x} + 3y = 4$$
$$3x \circ 2y = 5$$
$$4x + 4$$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3x} + 3y = 4$$
$$3x \circ 2y = 5$$
$$4x + 6y$$

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2 + 3y = 4$$

3x ó 2y = 5
4x + 6y =

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2 + 3y = 4$$

3x ó 2y = 5
4x + 6y = 8

To solve for x, we must eliminate the y terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2x + 3y = 4$$

 $3x \circ 2y = 5$
 $4x + 6y = 8$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y =

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2 + 3y = 4$$

 $3 + 3x + 6y = 5$
 $4x + 6y = 8$
 $9x + 6y = 15$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x =

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x = 23

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x = 23

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x = 23

X

To solve for x, we must eliminate the y terms. Multiply both sides of the top equation by 2. Multiply both sides of the bottom equation by 3. Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x = 23

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x = 23
 $x = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations. Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

3 3x ó 2y = 5
4x + 6y = 8
9x ó 6y = 15
13x = 23
 $x = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$2 + 3y = 4$$

 $3 + 3x + 3y = 4$
 $4x + 6y = 8$
 $9x + 6y = 15$
 $13x = 23$
 $x = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12.
$$\frac{2}{3} 2x + 3y = 4$$

 $3 3x 6 2y = 5$
 $4x + 6y = 8$
 $9x 6 6y = 15$
 $13x = 23$
 $x = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

 $3 3x \circ 2y = 5$
 $4x + 6y = 8$
 $9x \circ 6y = 15$
 $13x = 23$
 $x = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.
Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{12}$$

13

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{12}$$

13

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{12}$$

13

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 \frac{3}{-2}$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$4x + 6y = 8$$

$$-6x + 4y = -10$$

$$13y$$

 $\mathbf{x} = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$6x + 9y = 12$$

$$-6x + 4y = -10$$

$$13y = 13y = 12$$

 $\mathbf{x} = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$6x + 9y = 12$$

$$-6x + 4y = -10$$

$$13y = 2$$

 $\mathbf{x} = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 \frac{3}{-2}$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$4x + 6y = 8$$

$$-6x + 4y = -10$$

$$13y = 2$$

 $\mathbf{x} = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

У

Solve each of the following systems of equations using the multiplication-addition method.

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

$$y$$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

y =

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 \frac{3}{-2}$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$3x \circ 2y = 5$$

$$-6x + 4y = -10$$

$$13y = 2$$

$$=\frac{23}{13}$$

X

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

 $y = \frac{2}{13}$

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \begin{array}{c} 2 \\ 3 \\ 3 \\ 3 \\ 4x + 6y = 8 \\ 9x \\ 6y = 15 \\ 13x = 23 \end{array}$$

 $x = \frac{23}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

$$12. \frac{2}{3} 2x + 3y = 4$$

$$3 3x \circ 2y = 5$$

$$4x + 6y = 8$$

$$9x \circ 6y = 15$$

$$13x = 23$$

$$x = \frac{23}{13}$$

$$y = \frac{2}{13}$$

$$y = \frac{2}{13}$$

$$4x + 6y = 8$$

$$-6x + 4y = -10$$

$$13y = 2$$

$$x = \frac{23}{13}$$
 $y = \frac{2}{13}$

To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Notice that the y terms are opposite. Add the equations.

Now, solve for x.

To solve for y, we must eliminate the x terms.

Multiply both sides of the top equation by 3.

Multiply both sides of the bottom equation by -2.

Notice that the x terms are opposite.

Add the equations.

Solve each of the following systems of equations using the **multiplication-addition method**. To solve

12. $\frac{2}{3} 2x + 3y = 4$ $\frac{3}{-2}$ $x = \frac{23}{13}$ $y = \frac{2}{13}$ To solve for x, we must eliminate the y terms.

Multiply both sides of the top equation by 2.

Multiply both sides of the bottom equation by 3.

Good luck on your homework !!

$$x = \frac{23}{13}$$
 $y = \frac{2}{13}$

To solve for y, we must eliminate the x terms. Multiply both sides of the top equation by 3. Multiply both sides of the bottom equation by -2. Notice that the x terms are opposite. Add the equations. Now, solve for y.