Parallel Lines

Given: L_{1} and L_{2} are two oblique lines with slopes, m_{1} and m_{2}, respectively. L_{1} is parallel to L_{2} if and only if $m_{1}=m_{2}$.

Any two horizontal lines are parallel. Any two vertical lines are parallel.

Example 1: Parallel Lines

$$
m_{1}=m_{2}=\frac{1}{3}
$$

Example 3: Parallel Lines

Horizontal lines are parallel.

Example 2: Parallel Lines

$$
m_{1}=m_{2}=\frac{-2}{3}
$$

Example 4: Parallel Lines

Vertical lines are parallel.

Perpendicular Lines

Given: L_{1} and L_{2} are two oblique lines with slopes, m_{1} and m_{2}, respectively.
L_{1} is perpendicular to L_{2} if and only if $\left(m_{1}\right)\left(m_{2}\right)=-1$.
Note: m_{1} is the 'negative reciprocal' of $\mathbf{m}_{\mathbf{2}}$.
If L_{1} is a horizontal line and L_{2} is a vertical line, then L_{1} is perpendicular to L_{2}.

Example 1: Perpendicular Lines

$$
m_{1}=\frac{-3}{2} \quad m_{2}=\frac{2}{3}
$$

Example 2: Perpendicular Lines

$$
m_{1}=\frac{1}{3} \quad m_{2}=-3
$$

Example 3: Perpendicular Lines

Any horizontal line is perpendiculr to any vertical line.

