General Algebra II Class Notes \#2 Unit 2 page 1

The Equation of a Line
In this part of the unit, a line will be described. Your job will be to write its equation. We will start with a review of the three types of lines and their most common equations.

Type 1: Horizontal Line Equation: $y=k$
Type 2: Vertical Line Equation: $x=k$
Type 3: Oblique Line Equation: $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ (slope-intercept equation)
When writing the equation of a line, first determine the type of line, then find its equation. Horizontal and vertical lines should be fairly routine (especially once you have done a few practice problems). Oblique lines are the most challenging. Of course if both the slope and the y-intercept are known, then the slope-intercept equation can be written easily. In the event that the y-intercept is not given, however, there is another equation that proves to be very useful. It is called the point-slope equation. If you know a point on the line, represented by $\left(x_{1}, y_{1}\right)$, and the slope of the line, represented by m, then an equation of the line is $y-y_{1}=m\left(x-x_{1}\right)$. This equation is called a point-slope equation of the line. The slope-intercept equation can easily be derived from this equation.

Consider the following examples.
Find the equation of each line described. If the line is oblique, then write the slopeintercept equation.

1. The line through $(3,-1)$ and $(-2,-1)$

Note that the two points have the same y-coordinates.
This tells us that the line is horizontal.

$$
y=-1
$$

2. The line through $(3,-1)$ and $(3,5)$

Note that the two points have the same x-coordinates.
This tells us that the line is vertical.

$$
\mathbf{x}=\mathbf{3}
$$

3. The line through $(-2,5)$ with slope 0

The fact that the slope is 0 tells us that the line is horizontal.
The line contains the point $(-2,5)$.

$$
y=5
$$

4. The line through $(-2,5)$ with "no slope"

The phrase "no slope" is commonly used to describe the slope of a vertical line. The slope of a vertical line is undefined.
The line contains the point $(-2,5)$.

$$
x=-2
$$

5. The line with slope 3 and y-intercept -1

This line is oblique. We are given that $m=3$ and $b=-1 . \quad y=3 x-1$

General Algebra II Class Notes \#2 Unit 2 page 2

Find the equation of each line described. If the line is oblique, then write the slopeintercept equation.
6. The line with slope -2 through the point $(0,5)$

This line is oblique. We are given that $\mathbf{m}=\mathbf{- 2}$.
Since the line contains the point $(0,5), b=5$.

$$
y=-2 x+5
$$

Note: The \mathbf{y}-intercept, b, is the value of \mathbf{y} when $\mathbf{x}=0$.
7. The line through $(0,1)$ and $(2,5)$

This line is oblique. We must find the slope first.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{2-0}=\frac{4}{2}=2
$$

Since the line contains the point $(0,1), b=1$.

$$
y=2 x+1
$$

8. The line with slope 4 through the point $(3,1)$

The line is oblique. We are given that $\mathrm{m}=4$.
We are not given the y-intercept. We will use the point-slope equation. $\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)$
Since the line contains the point $(3,1), x_{1}=3$ and $y_{1}=1$.
The point-slope equation becomes $\mathrm{y}-1=4(\mathrm{x}-3)$.
Solving for y, we get

$$
\begin{aligned}
y-1 & =4 x-12 \\
y & =4 x-11 \quad y=4 x-11
\end{aligned}
$$

9. The line through $(-2,3)$ and $(2,-5)$

This line is oblique. We must find the slope first.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-3}{2--2}=\frac{-8}{4}=-2
$$

We are not given the y-intercept. We will use the point-slope equation. $\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)$
Since the line contains the point ($2,-5$), $x_{1}=2$ and $y_{1}=-5$.
The point-slope equation becomes $y-5=-2(x-2)$.
Solving for y, we get

$$
\begin{aligned}
y+5 & =-2 x+4 \\
y & =-2 x-1 \quad y=-2 x-1
\end{aligned}
$$

Note: The point $(-2,3)$ would have worked as well.
Using this point, $x_{1}=-2$ and $y_{1}=3$.
The point-slope equation becomes $y-3=-2(x-2)$.
Solving for y, we get

$$
\begin{aligned}
& y-3=-2(x+2) \\
& y-3=-2 x-4 \\
& y=-2 x-1!!!
\end{aligned}
$$

