General Algebra II Lesson #3 Unit 2 Notes #3 **Class Worksheet #3** For Worksheets #5 & #6

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

-5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

$$-5x + 2y = -4$$

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

X

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

 $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$

$$-5x + 2y = -4$$
$$2y = 5x - 4$$
$$y = \frac{5}{2}x - 2$$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b m₂ = -5x + 2y = -4 2y = 5x - 4 $y = \frac{5}{2}x - 2$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b $m_2 = 5/2$ -5x + 2y = -4 2y = 5x - 4 $y = \frac{5}{2}x - 2$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b $m_2 = 5/2$ -5x + 2y = -4 2y = 5x - 4 $y = \frac{5}{2}x - 2$

$$m_1 = 5/2$$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b m₂ = 5/2 b = 1 -5x + 2y = -42y = 5x - 4 y = $\frac{5}{2}x - 2$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b m₂ = 5/2 b = 1 -5x + 2y = -42y = 5x - 4 y = $\frac{5}{2}x - 2$

 $y = m_1 = 5/2$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b m₂ = 5/2 b = 1 y = $\frac{5}{2}x$ -5x + 2y = -4 2y = 5x - 4 $y = \frac{5}{2}x - 2$ m₁ = 5/2

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b m₂ = 5/2 b = 1 y = $\frac{5}{2}x + 1$ -5x + 2y = -4 2y = 5x - 4 y = $\frac{5}{2}x - 2$ m₁ = 5/2

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line y = mx + b -5x + 2y = -4

 $m_2 = 5/2$

b = 1

 $y = \frac{5}{2}x + 1$

2y = 5x - 4

$$y = \frac{5}{2}x - 2$$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line

y = mx + b

 $m_2 = 5/2$

b = 1

 $y = \frac{5}{2}x + 1$

-5x + 2y = -42y = 5x - 4

$$y = \frac{5}{2}x - 2$$

1. The line through (0, 1) parallel to -5x + 2y = -4

oblique line-5x + 2y = -4y = mx + b2y = 5x - 4 $m_2 = 5/2$ 2y = 5x - 4b = 1 $y = \frac{5}{2}x - 2$ $y = \frac{5}{2}x + 1$ $m_1 = 5/2$

2. The line through (-3, 2) parallel to 4x + 3y = 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

 $4\mathbf{x} + 3\mathbf{y} = 9$

2. The line through (-3, 2) parallel to 4x + 3y = 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

4x + 3y = 93y = -4x + 9

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

X

0

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

4x + 3y = 93y = -4x + 9 $y = \frac{-4}{3}x$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

4x + 3y = 93y = -4x + 9 $y = \frac{-4}{3}x + 3$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$ $m_1 = -\frac{4}{3}$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$ $m_1 = -\frac{4}{3}$

X

0

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$ $m_1 = -4/3$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = y = -\frac{4}{3}x + 3$ $m_1 = -\frac{4}{3}$ $m_1 = -\frac{4}{3}$

X

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b

 $m_2 = -4/3$

4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$ $m_1 = -\frac{4}{3}$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $m_1 = -4/3$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $m_1 = -4/3$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b

$$m_2 = -4/3$$

b = ?
 $4x + 3y = 9$
 $3y = -4x + 9$
 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $m_1 = -4/3$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $m_1 = -4/3$ y - 2 =

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $m_1 = -4/3$ $y - 2 = -\frac{4}{3}($

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x - -3)$ $m_1 = -4/3$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

y - y₁ = m(x - x₁) m₁ = -4/3 y - 2 = $\frac{-4}{3}(x + 3)$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x + 3)$ $y - 2 = \frac{-4}{3}(x + 3)$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ h = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x + 3)$ $y - 2 = \frac{-4}{3}x$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x + 3)$ $y - 2 = \frac{-4}{3}x - 4$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x + 3)$ $y - 2 = \frac{-4}{3}x - 4$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ h = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x + 3)$ $m_1 = -4/3$

$$y = \frac{-4}{3}y$$

 $y-2 = \frac{-4}{3}x - 4$

2. The line through (-3, 2) parallel to 4x + 3y = 9

oblique line

y = mx + b $m_2 = -4/3$ b = ? 4x + 3y = 9 3y = -4x + 9 $y = \frac{-4}{3}x + 3$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{-4}{3}(x + 3)$ $m_1 = -4/3$

$$y - 2 = \frac{-4}{3}x - 4$$

 $y = \frac{-4}{3}x - 2$

X

0

2. The line through (-3, 2) parallel to 4x + 3y = 9

 $y = \frac{-4}{3}x - 2$ **oblique line** $4\mathbf{x} + 3\mathbf{y} = 9$ y = mx + b3y = -4x + 9 $m_2 = -4/3$ $y = -\frac{4}{3}x + 3$ **b** = ? $y - y_1 = m(x - x_1)$ $m_1 = -4/3$ $y-2=\frac{-4}{3}(x+3)$ $y-2 = \frac{-4}{3}x - 4$ $y = \frac{-4}{3}x - 2$

2. The line through (-3, 2) parallel to 4x + 3y = 9

 $y = \frac{-4}{3}x - 2$ **oblique line** $4\mathbf{x} + 3\mathbf{y} = 9$ y = mx + b3y = -4x + 9 $m_2 = -4/3$ $y = -\frac{4}{3}x + 3$ $y = \frac{-4}{3}x - 2$ **b** = ? $y = \frac{-4}{3}x + 3$ $y - y_1 = m(x - x_1)$ $m_1 = -4/3$ $y-2=\frac{-4}{3}(x+3)$ $y-2 = \frac{-4}{3}x - 4$ $y = \frac{-4}{3}x - 2$

2. The line through (-3, 2) parallel to 4x + 3y = 9

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

$$\mathbf{x} - 3\mathbf{y} = \mathbf{6}$$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

X

0

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

x - 3y = 6-3y = -x + 6 $y = \frac{1}{3}x$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

x - 3y = 6-3y = -x + 6 $y = \frac{1}{3}x - 2$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

x - 3y = 6-3y = -x + 6 $y = \frac{1}{3}x - 2$

 $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

x - 3y = 6-3y = -x + 6 $y = \frac{1}{3}x - 2$ $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y = mx + b

x - 3y = 6-3y = -x + 6 $y = \frac{1}{3}x - 2$

 $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y = mx + b $m_{2} = x - 3y = 6$ -3y = -x + 6 $y = \frac{1}{3}x - 2$

 $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

 $m_1 = 1/3$

oblique line

y = mx + b m₂ = 1/3 x - 3y = 6 -3y = -x + 6 $y = \frac{1}{3}x - 2$

y

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y = mx + b m₂ = 1/3 x - 3y = 6 -3y = -x + 6 $y = \frac{1}{3}x - 2$

 $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

 $m_1 = 1/3$

oblique line

y = mx + b m₂ = 1/3 b = ? x - 3y = 6-3y = -x + 6 $y = \frac{1}{3}x - 2$

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y = mx + b
m₂ = 1/3
b = ?

$$x - 3y = 6$$

-3y = -x + 6
y = $\frac{1}{3}x - 2$

 $y - y_1 = m(x - x_1)$ $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

y = mx + b
m₂ = 1/3
b = ?

$$x - 3y = 6$$

-3y = -x + 6
 $y = \frac{1}{3}x - 2$

$$y - y_1 = m(x - x_1)$$
 $m_1 = 1/3$
 $y - 5 =$

3. The line through (2, 5) parallel to x - 3y = 6

y = mx + b
m₂ = 1/3
b = ?

$$x - 3y = 6$$

-3y = -x + 6
y = $\frac{1}{3}x - 2$

$$y - y_1 = m(x - x_1)$$

 $y - 5 = \frac{1}{3}($
 $m_1 = 1/3$

3. The line through (2, 5) parallel to x - 3y = 6

y = mx + b
m₂ = 1/3
b = ?

$$x - 3y = 6$$

-3y = -x + 6
y = $\frac{1}{3}x - 2$

y - y₁ = m(x - x₁) m₁ = 1/3
y - 5 =
$$\frac{1}{3}$$
(x - 2)

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y - 5 =

y = mx + b

$$m_2 = 1/3$$

h = ?
 $x - 3y = 6$
 $-3y = -x + 6$
 $y = \frac{1}{3}x - 2$

y - y₁ = m(x - x₁) m₁ = 1/3
y - 5 =
$$\frac{1}{3}$$
(x - 2)

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y = mx + b
m₂ = 1/3
b = ?

$$x - 3y = 6$$

-3y = -x + 6
y = $\frac{1}{3}x - 2$

y - y₁ = m(x - x₁) m₁ = 1/3 y - 5 = $\frac{1}{3}$ (x - 2) y - 5 = $\frac{1}{3}$ x

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

y = mx + b m₂ = 1/3 b = ? x - 3y = 6 -3y = -x + 6 $y = \frac{1}{3}x - 2$

y - y₁ = m(x - x₁) m₁ = 1/3 y - 5 = $\frac{1}{3}(x - 2)$ y - 5 = $\frac{1}{3}x - \frac{2}{3}$ x

3. The line through (2, 5) parallel to x - 3y = 6

oblique line

D -

 $y-5=\frac{1}{3}x-\frac{2}{3}$

$$x - 3y = 6$$

$$m_2 = 1/3$$

$$b = ?$$

$$x - 3y = 6$$

$$-3y = -x + 6$$

$$y = \frac{1}{3}x - 2$$

$$y - y_1 = m(x - x_1)$$

 $y - 5 = \frac{1}{2}(x - 2)$
 $m_1 = 1/2$

3. The line through (2, 5) parallel to x - 3y = 6

3

oblique line

 $y-5=\frac{1}{3}x-\frac{2}{3}$

 $y = \frac{1}{3}x$

$$x = mx + b$$

 $m_2 = 1/3$
 $b = ?$
 $x - 3y = 6$
 $-3y = -x + 6$
 $y = \frac{1}{3}x - 2$

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$ $m_1 = 1/3$ $y-5=\frac{1}{3}(x-2)$

3. The line through (2, 5) parallel to x - 3y = 6

3

oblique line

 $y-5=\frac{1}{3}x-\frac{2}{3}$

 $y = \frac{1}{3}x + \frac{13}{3}$

$$x = mx + b$$

 $m_2 = 1/3$
 $b = ?$
 $x - 3y = 6$
 $-3y = -x + 6$
 $y = \frac{1}{3}x - 2$

 $y - y_1 = m(x - x_1)$ $m_1 = 1/3$ $y-5=\frac{1}{3}(x-2)$

X

3. The line through (2, 5) parallel to x - 3y = 6

3. The line through (2, 5) parallel to x - 3y = 6

oblique line $\mathbf{x} - 3\mathbf{y} = \mathbf{6}$ y = mx + b-3y = -x + 6 $m_2 = 1/3$ $y = \frac{1}{3}x - 2$ **b** = ? $y - y_1 = m(x - x_1)$ $m_1 = 1/3$ $y-5=\frac{1}{3}(x-2)$ $y-5=\frac{1}{3}x-\frac{2}{3}$ $y = \frac{1}{3}x + \frac{13}{3}$

 $y = \frac{1}{3}x +$

 $y = \frac{1}{3}x - 2$

Χ

3. The line through (2, 5) parallel to x - 3y = 6

4. The line through (0, 4) perpendicular to 2x - 3y = 9

4. The line through (0, 4) perpendicular to 2x - 3y = 9

4. The line through (0, 4) perpendicular to 2x - 3y = 9

4. The line through (0, 4) perpendicular to 2x - 3y = 9oblique line

4. The line through (0, 4) perpendicular to 2x - 3y = 9

$$2x - 3y = 9$$

4. The line through (0, 4) perpendicular to 2x - 3y = 9**oblique line** 2x - 3y = 9-3y = X 0

4. The line through (0, 4) perpendicular to 2x - 3y = 9**oblique line** 2x - 3y = 9-3y = -2xX 0

4. The line through (0, 4) perpendicular to 2x - 3y = 9

4. The line through (0, 4) perpendicular to 2x - 3y = 9

4. The line through (0, 4) perpendicular to 2x - 3y = 9

$$2x - 3y = 9$$
$$-3y = -2x + 9$$
$$y = \frac{2}{3}x$$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

$$2x - 3y = 9$$
$$-3y = -2x + 9$$
$$y = \frac{2}{3}x - 3$$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

2x - 3y = 9-3y = -2x + 9 $y = \frac{2}{3}x - 3$ $m_1 = \frac{2}{3}$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

y = mx + b -3y = -2x + 9 $y = \frac{2}{3}x - 3$ $m_1 = 2/3$

X

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

y = mx + b $m_2 = y = \frac{2}{3}x - 3$ $m_1 = 2/3$ 2x - 3y = 9 -3y = -2x + 9 $y = \frac{2}{3}x - 3$

X

4. The line through (0, 4) perpendicular to 2x - 3y = 9

 $m_1 = 2/3$

oblique line

y = mx + b $m_2 = -3/2$ 2x - 3y = 9 -3y = -2x + 9 $y = \frac{2}{3}x - 3$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

y = mx + b $m_2 = -3/2$ 2x - 3y = 9 -3y = -2x + 9 $y = \frac{2}{3}x - 3$

 $m_1 = 2/3$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

y = mx + b $m_2 = -3/2$ b = 4 2x - 3y = 9 -3y = -2x + 9 $y = \frac{2}{3}x - 3$

 $m_1 = 2/3$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

y = mx + b $m_2 = -3/2$ b = 4 2x - 3y = 9 -3y = -2x + 9 $y = \frac{2}{3}x - 3$

 $y = m_1 = 2/3$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

y = mx + b
m₂ = -3/2
b = 4
y =
$$\frac{-3}{2}x$$

 $2x - 3y = 9$
 $-3y = -2x + 9$
 $y = \frac{2}{3}x - 3$
m₁ = 2/3

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

L

y = mx + b
m₂ = -3/2
b = 4
y =
$$\frac{-3}{2}x + 4$$

 $2x - 3y = 9$
 $-3y = -2x + 9$
 $y = \frac{2}{3}x - 3$
m₁ = 2/3

4. The line through (0, 4) perpendicular to 2x - 3y = 9

2x - 3y = 9

 $m_1 = 2/3$

oblique line

 $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$

 $m_2 = -3/2$

 $\mathbf{b} = \mathbf{4}$

 $y = \frac{-3}{2}x + 4$

-3y = -2x + 9

$$y = \frac{2}{3}x - 3$$

 $y = \frac{-3}{2}x + 4$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

oblique line

y = mx + b

 $m_2 = -3/2$

 $\mathbf{b} = \mathbf{4}$

 $y = \frac{-3}{2}x + 4$

2x - 3y = 9-3y = -2x + 9

$$y = \frac{2}{3}x - 3$$

 $m_1 = 2/3$

4. The line through (0, 4) perpendicular to 2x - 3y = 9

 $2\mathbf{x} - 3\mathbf{y} = 9$

oblique line

 $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$

$$\begin{array}{l}
 -3y = -2x + 9 \\
 y = -3/2 \\
 b = 4 \\
 y = -\frac{3}{2}x + 4 \\
 y = \frac{-3}{2}x + 4
 \end{array}$$

$$\begin{array}{l}
 -3y = -2x + 9 \\
 y = \frac{2}{3}x - 3 \\
 m_1 = 2/3
 \end{array}$$

5. The line through (5, -2) perpendicular to 5x + 2y = -8 oblique line

5. The line through (5, -2) perpendicular to 5x + 2y = -8oblique line

5x + 2y = -8

5. The line through (5, -2) perpendicular to 5x + 2y = -8**oblique line** $5\mathbf{x} + 2\mathbf{y} = -8$ **2y** = X 0

5. The line through (5, -2) perpendicular to 5x + 2y = -8**oblique line** $5\mathbf{x} + 2\mathbf{y} = -8$ 2y = -5xX 0

5. The line through (5, -2) perpendicular to 5x + 2y = -8**oblique line** $5\mathbf{x} + 2\mathbf{y} = -8$ 2y = -5x - 8X 0

5. The line through (5, -2) perpendicular to 5x + 2y = -8oblique line 5x + 2y = -82y = -5x - 8y =

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

X

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b m₂ = 5x + 2y = -8 2y = -5x - 8 $y = -\frac{5}{2}x - 4$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b

 $m_2 = 2/5$

5x + 2y = -82y = -5x - 8 $y = \frac{-5}{2}x - 4$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b

 $m_2 = 2/5$

5x + 2y = -82y = -5x - 8 $y = \frac{-5}{2}x - 4$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b m₂ = 2/5 b = ? 5x + 2y = -8 2y = -5x - 8 $y = \frac{-5}{2}x - 4$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b

$$m_2 = 2/5$$

b = ?
 $5x + 2y = -8$
 $2y = -5x - 8$
 $y = \frac{-5}{2}x - 4$

 $y - y_1 = m(x - x_1)$ $m_1 = -5/2$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b

$$m_2 = 2/5$$

b = ?
 $5x + 2y = -8$
 $2y = -5x - 8$
 $y = \frac{-5}{2}x - 4$

 $y - y_1 = m(x - x_1)$ $m_1 = -5/2$ y - -2 =

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

У

$$5x + 2y = -8$$

$$m_2 = 2/5$$

$$b = 2$$

$$5x + 2y = -8$$

$$2y = -5x - 8$$

$$y = \frac{-5}{2}x - 4$$

 $y - y_1 = m(x - x_1)$ $y - -2 = \frac{2}{5}($ $m_1 = -5/2$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y

$$5x + 2y = -8$$

$$m_2 = 2/5$$

$$b = 2$$

$$5x + 2y = -8$$

$$2y = -5x - 8$$

$$y = -\frac{5}{2}x - 4$$

y - y₁ = m(x - x₁) m₁ = -5/2 y - -2 = $\frac{2}{5}(x - 5)$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b $m_2 = 2/5$ b = ? 5x + 2y = -8 2y = -5x - 8 $y = -\frac{5}{2}x - 4$

y - y₁ = m(x - x₁) m₁ = -5/2 y - -2 = $\frac{2}{5}(x - 5)$ y + 2 =

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b $m_2 = 2/5$ b = ? 5x + 2y = -8 2y = -5x - 8 $y = -\frac{5}{2}x - 4$

 $y - y_1 = m(x - x_1)$ $y - 2 = \frac{2}{5}(x - 5)$ $y + 2 = \frac{2}{5}x$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

y = mx + b $m_2 = 2/5$ b = ? 5x + 2y = -8 2y = -5x - 8 $y = -\frac{5}{2}x - 4$

y - y₁ = m(x - x₁) m₁ = -5/2 y - -2 = $\frac{2}{5}(x - 5)$ y + 2 = $\frac{2}{5}x - 2$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

 $\mathbf{V} = \mathbf{I}$

m₂ :

= mx + b

$$h_2 = 2/5$$

b = ?
 $5x + 2y = -8$
 $2y = -5x - 8$
 $y = \frac{-5}{2}x - 4$

$$y = \frac{-5}{2}x - 4$$

$$y - y_1 = m(x - x_1)$$

 $y - -2 = \frac{2}{5}(x - 5)$
 $m_1 = -5/2$

 $y + 2 = \frac{2}{5}x - 2$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

 $y + 2 = \frac{2}{5}x - 2$

 $y = \frac{2}{5}x$

y = mx + b $m_2 = 2/5$ 5x + 2y = -82y = -5x - 8

b = ?
$$y = \frac{-3}{2}x - 4$$

y - y₁ = m(x - x₁) m₁ = -5/2 y - -2 = $\frac{2}{5}(x - 5)$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

oblique line

b = ?

y = mx + b $m_2 = 2/5$ 5x + 2y = -82y = -5x - 8

$$\mathbf{y} = \frac{-5}{2} \mathbf{x} - 4$$

$$y - y_1 = m(x - x_1)$$

 $y - -2 = \frac{2}{5}(x - 5)$
 $m_1 = -5/2$

X

$$y + 2 = \frac{2}{5}x - 2$$
$$y = \frac{2}{5}x - 4$$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

 $y = \frac{2}{5}x - 4$ **oblique line** 5x + 2y = -8y = mx + b2y = -5x - 8 $m_2 = 2/5$ $y = \frac{-5}{2}x - 4$ **b** = ? $y - y_1 = m(x - x_1)$ 0 $m_1 = -5/2$ $y - -2 = \frac{2}{5}(x - 5)$ $y + 2 = \frac{2}{5}x - 2$ $y = \frac{2}{5}x - 4$

5. The line through (5, -2) perpendicular to 5x + 2y = -8

 $y = \frac{2}{5}x - 4$ **oblique line** 5x + 2y = -8y = mx + b2y = -5x - 8 $m_2 = 2/5$ $y = \frac{-5}{2}x - 4$ **b** = ? $y = \frac{-5}{2}x - 4$ $y - y_1 = m(x - x_1)$ $m_1 = -5/2$ $y - -2 = \frac{2}{5}(x - 5)$ $y = \frac{2}{5}x - 4$ $y + 2 = \frac{2}{5}x - 2$ $y = \frac{2}{5}x - 4$

6. The line through (1, -3) perpendicular to 3x - y = 2

6. The line through (1, -3) perpendicular to 3x - y = 2

6. The line through (1, -3) perpendicular to 3x - y = 2

6. The line through (1, -3) perpendicular to 3x - y = 2oblique line

6. The line through (1, -3) perpendicular to 3x - y = 2**oblique line** 3x - y = 2X 0

6. The line through (1, -3) perpendicular to 3x - y = 2**oblique line** 3x - y = 2 $-\mathbf{V} =$ X 0

6. The line through (1, -3) perpendicular to 3x - y = 2**oblique line** 3x - y = 2-y = -3xX 0

6. The line through (1, -3) perpendicular to 3x - y = 2**oblique line** 3x - y = 2-y = -3x + 2X 0

6. The line through (1, -3) perpendicular to 3x - y = 2**oblique line** 3x - y = 2 $-\mathbf{y} = -3\mathbf{x} + 2$ **y** = X 0

6. The line through (1, -3) perpendicular to 3x - y = 2oblique line 3x - y = 2-y = -3x + 2y = 3x

6. The line through (1, -3) perpendicular to 3x - y = 2oblique line

$$3x - y = 2$$

$$y = -3x + 2$$

$$y = 3x - 2$$

X

0

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

$$3x - y = 2$$
$$-y = -3x + 2$$
$$y = 3x - 2$$

6. The line through (1, -3) perpendicular to 3x - y = 2oblique line 3x - y = 2

6. The line through (1, -3) perpendicular to 3x - y = 2**oblique line** 3x - y = 2y = mx + b-y = -3x + 2y = 3x - 2X 0 $m_1 = 3$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

y = mx + b $m_2 =$ 3x - y = 2-y = -3x + 2

$$y = 3x - 2$$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

y = mx + b $m_2 = -1/3$ 3x - y = 2-y = -3x + 2

$$\mathbf{y} = \mathbf{3}\mathbf{x} - \mathbf{2}$$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

y = mx + b $m_2 = -1/3$ 3x - y = 2-y = -3x + 2

$$\mathbf{y} = \mathbf{3}\mathbf{x} - \mathbf{2}$$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

y = mx + b $m_2 = -1/3$ 3x - y = 2-y = -3x + 2

$$\mathbf{b} = ? \qquad \mathbf{y} = 3\mathbf{x} - 2$$

6. The line through (1, -3) perpendicular to 3x - y = 2

JA

oblique line

y = mx + b

$$m_2 = -1/3$$

b = ?
 $3x - y = 2$
 $-y = -3x + 2$
 $y = 3x - 2$

 $y - y_1 = m(x - x_1)$ $m_1 = 3$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

y - -3 =

$$y = mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$\mathbf{y} = \mathbf{x} - \mathbf{z}$$

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

h

J

$$y = mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$= ? y = 3x - 2$$

$$y - y_1 = m(x - x_1)$$
 $m_1 = 3$
 $y - -3 = \frac{-1}{3}($

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

$$y = mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$y = 3x - 2$$

$$y - y_1 = m(x - x_1)$$

 $y - -3 = \frac{-1}{3}(x - 1)$
 $m_1 = 3$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

b = ?

y

y + 3 =

$$x = mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$\mathbf{y} = \mathbf{3}\mathbf{x} - \mathbf{2}$$

y - y₁ = m(x - x₁) m₁ = 3 y - -3 = $\frac{-1}{3}$ (x - 1)

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

 $\mathbf{h} =$

y

$$= mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$y = 3x - 2$$

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{-1}{3}(x - 1)$ $y + 3 = \frac{-1}{3}x$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

b = ?

У

$$y = mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$\mathbf{y} = 3\mathbf{x} - 2$$

$$y - y_1 = m(x - x_1)$$

 $y - -3 = \frac{-1}{3}(x - 1)$
 $y + 3 = \frac{-1}{3}x + \frac{1}{3}$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

- y = mx + b-y = -3x + 2
- $m_2 = -1/3$ b = ? y = 3x - 2
- $y y_1 = m(x x_1)$ $y - -3 = \frac{-1}{3}(x - 1)$

y =

 $y + 3 = \frac{-1}{3}x + \frac{1}{3}$

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

- y = mx + b-y = -3x + 2
- $m_2 = -1/3$ b = ?y = 3x - 2
- $y y_1 = m(x x_1)$ $m_1 = 3$

$$y - -3 = \frac{-1}{3}(x - 1)$$

y + 3 = $\frac{-1}{3}x + \frac{1}{3}$
y = $\frac{-1}{3}x$

31

2

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line

 $\mathbf{b} =$

y =

$$y = mx + b$$

 $m_2 = -1/3$
 $3x - y = 2$
 $-y = -3x + 2$

$$y = 3x - 2$$

$$y - y_1 = m(x - x_1)$$
 $m_1 = 3$

$$y - -3 = \frac{-1}{3}(x - 1)$$

y + 3 = $\frac{-1}{3}x + \frac{1}{3}$
y = $\frac{-1}{3}x - \frac{8}{3}$

3

3

6. The line through (1, -3) perpendicular to 3x - y = 2

oblique line3x - y = 2y = mx + b-y = -3x + 2 $m_2 = -1/3$ -y = -3x + 2b = ?y = 3x - 2

 $y - y_1 = m(x - x_1)$ $m_1 = 3$

$$y - -3 = \frac{-1}{3}(x - 1)$$

y + 3 = $\frac{-1}{3}x + \frac{1}{3}$
y = $\frac{-1}{3}x - \frac{8}{3}$

- 6. The line through (1, -3) perpendicular to 3x y = 2
- oblique line
 3x y = 2

 y = mx + b -y = -3x + 2

 $m_2 = -1/3$ -y = -3x + 2

 b = ? y = 3x 2

 $y y_1 = m(x x_1)$ $m_1 = 3$

 $y - -3 = \frac{-1}{3}(x - 1)$

 $y + 3 = \frac{-1}{3}x + \frac{1}{3}$

 $y = \frac{-1}{3}x - \frac{8}{3}$

6. The line through (1, -3) perpendicular to 3x - y = 2

6. The line through (1, -3) perpendicular to 3x - y = 2

