General Algebra II Worksheet \#9 Unit 12 Selected Solutions

Solve the following problems. Show your process neatly organized. Round your answers to the nearest tenth of a year.

1. $\$ 1000$ is invested in an account that pays interest at an annual rate of 6% compounded monthly. How long will it take for the value of the account to double?

$$
\begin{array}{ll}
A=P\left(1+\frac{R}{N}\right)^{N t} & 2000=1000\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=\$ 2000 & 1.005^{12 t}=2 \quad \text { It will take about } 5.4 \text { years. } \\
\begin{array}{l}
\mathrm{P}=\$ 1000 \\
R=0.06
\end{array} & \log \left(1.005^{12 t}\right)=\log 2 \\
N=12 & 12 \log 1.005=\log 2 \\
t=? ? & t=\frac{\log 2}{12 \log 1.005} \approx 5.4
\end{array}
$$

3. $\$ 600$ is invested in an account that pays interest at an annual rate of 7% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lcl}
A=P e^{R t} & 1200=600 e^{0.07 t} & \\
A=\$ 1200 & e^{0.07 t}=2 & \text { It will take about } 9.9 \text { years. } \\
\mathrm{P}=\$ 600 & \ln \left(\mathrm{e}^{0.07 t}\right)=\ln 2 & \\
\mathrm{R}=0.07 & 0.07 \mathrm{t}=\ln 2 & \\
t=? ? & t=(\ln 2) \div 0.07 \approx 9.9 &
\end{array}
$$

5. $\$ 600$ is invested in an account that pays interest at an annual rate of 7% compounded quarterly. How long will it take for the value of the account to reach $\mathbf{\$ 2 0 0 0}$?

$$
\begin{array}{lc}
A=P\left(1+\frac{R}{N}\right)^{N t} & 2000=600\left(1+\frac{0.07}{4}\right)^{4 t} \\
A=\$ 2000 & \left(1+\frac{0.07}{4}\right)^{4 t}=10 / 3 \quad \text { It will take about 17.3 years. } \\
P=\$ 600 & \log \left(1+\frac{0.07}{4}\right)^{4 t}=\log (10 / 3) \\
R=0.07 & 4 t \log \left(1+\frac{0.07}{4}\right)=\log (10 / 3) \\
N=4 & t=\frac{\log (10 / 3)}{4 \log \left(1+\frac{0.07}{4}\right)} \approx 17.3
\end{array}
$$

8. Money is invested in an account that pays interest at an annual rate of 4% compounded daily. How long will it take for the value of the account to double?

$$
\begin{array}{lcc}
A=P\left(1+\frac{R}{N}\right)^{N t} & 2 P=P\left(1+\frac{0.04}{365}\right)^{365 t} & t=\frac{\log 2}{365 \log \left(1+\frac{0.04}{365}\right)} \approx 17.3 \\
A=2 P & \left(1+\frac{0.04}{365}\right)^{365 t}=2 & \\
P=P & \log \left(1+\frac{0.04}{365}\right)^{365 t}=\log 2 & \text { It will take about 17.3 years. } \\
R=0.04 & N=365 & 365 t \log \left(1+\frac{0.04}{365}\right)=\log 2
\end{array}
$$

