General Algebra II Worksheet \#10 Unit 12 Selected Solutions

Solve the following problems. Show your process neatly organized. Round your answers to the nearest tenth of a year.

1. $\$ 3000$ is invested in an account that pays interest at an annual rate of $\mathbf{2 . 5 \%}$ compounded quarterly. How long will it take for the value of the account to double?

$$
\begin{array}{ll}
A=P\left(1+\frac{R}{N}\right)^{N t} & 6000=3000\left(1+\frac{0.025}{4}\right)^{4 t} \\
A=\$ 6000 & \left(1+\frac{0.025}{4}\right)^{4 t}=2 \quad \text { It will take about 27.8 years. } \\
P=\$ 3000 & \log \left(1+\frac{0.025}{4}\right)^{4 t}=\log 2 \\
R=0.025 & 4 t \log \left(1+\frac{0.025}{4}\right)=\log 2 \\
N=4 & t=\frac{\log 2}{4 \log \left(1+\frac{0.025}{4}\right)} \approx 27.8 \\
t=? ? &
\end{array}
$$

6. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{5 \%}$ compounded continuously. How long will it take for the value of the account to reach $\mathbf{\$ 1 5 0 0}$?

$$
\begin{array}{lcr}
A=P e^{R t} & 1500=500 e^{0.05 t} & \\
A=\$ 1500 & e^{0.05 t}=3 & \text { It will take about } 22 \text { years. } \\
P=\$ 500 & \ln \left(\mathrm{e}^{0.05 t}\right)=\ln 3 & \\
R=0.05 & 0.05 t=\ln 3 & \\
t=? ? & t=(\ln 3) \div 0.05 \approx 22.0 &
\end{array}
$$

8. Money is invested in an account that pays interest at an annual rate of $\mathbf{1 . 5 \%}$ compounded daily. How long will it take for the value of the account to double?

$$
\begin{array}{rlrl}
A & =P\left(1+\frac{R}{N}\right)^{N t} & 2 P=P\left(1+\frac{.015}{365}\right)^{365 t} & t=\frac{\log 2}{365 \log \left(1+\frac{.015}{365}\right)} \approx 46.2 \\
A=2 P & \left(1+\frac{.015}{365}\right)^{365 t}=2 & \\
P=P & & \\
R=0.015 & \log \left(1+\frac{.015}{365}\right)^{365 t}=\log 2 & \text { It will take about 46.2 years. } \\
N=365 & & \\
t=? ? & 365 t \log \left(1+\frac{.015}{365}\right)=\log 2 &
\end{array}
$$

9. Money is invested in an account that pays interest at an annual rate of 4% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& A=\mathbf{P e}^{\mathrm{Rt}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathbf{P}=\mathbf{P} \\
& 2 P=\mathbf{P e}^{0.04 \mathrm{t}} \\
& \begin{aligned}
\mathrm{e}^{0.04 t} & =2 \\
\ln \left(\mathrm{e}^{0.04 t}\right) & =\ln 2
\end{aligned} \\
& \mathrm{R}=\mathbf{0 . 0 4} \\
& 0.04 \mathrm{t}=\ln 2 \\
& \mathrm{t}=\text { ? ? } \\
& t=(\ln 2) \div 0.04 \approx 17.3
\end{aligned}
$$

