General Algebra 2 Worksheet \#8 Unit 10 Selected Solutions
3. Find the sum of the first 50 terms of the sequence defined by $a_{n}=4 n-1$.

$$
\begin{array}{lll}
a_{1}=4(1)-1=3 & \text { This is an arithmetic series. } & S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{2}=4(2)-1=7 & a_{50}=4(50)-1=199 & S_{50}=\frac{50}{2}\left(a_{1}+a_{50}\right) \\
a_{3}=4(3)-1=11 & & S_{50}=25(3+199)=25(202)=5,050
\end{array}
$$

5. Find the sum of the first 10 terms of the sequence defined by $a_{n+1}=-2 a_{n}$ where $a_{1}=\mathbf{- 1}$.

\[

\]

9. Evaluate the series $5+8+11+14+\ldots+701$.

This is an arithmetic series.

$$
\begin{array}{lrl}
\quad a_{1}=5 \quad d=3 & a_{n}=701 & S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{n}=a_{1}+(n-1) d & 3 n+2=701 & S_{233}=\frac{233}{2}(5+701) \\
a_{n}=5+(n-1) 3 & 3 n=699 & \\
a_{n}=5+3 n-3=3 n+2 & n=233 & S_{233}=(116.5)(706)=82,249
\end{array}
$$

12. $\sum_{k=1}^{5} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=1+4+9+16+25=55$
13. $\sum_{i=1}^{\infty}(2)\left(\frac{2}{3}\right)^{(i-1)}=(2)\left(\frac{2}{3}\right)^{0}+(2)\left(\frac{2}{3}\right)^{1}+(2)\left(\frac{2}{3}\right)^{2}+\ldots$ infinite geometric series $S=\frac{a_{1}}{1-r}$

$$
a_{1}=2 \quad r=\frac{2}{3} \quad S=\frac{2}{1-\frac{2}{3}}=\frac{2}{\frac{1}{3}}=(2)(3)=6
$$

18. A job has a starting salary of $\$ 14,000$ with a guaranteed increase of $\mathbf{3 \%}$ per year. Find the total salary for the first sixteen years.

$$
\begin{aligned}
& \text { geometric series } \\
& a_{1}=14,000 \quad r=1.03 \quad n=16 \\
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
S_{16}=\frac{14,000\left(1-1.03{ }^{16}\right)}{1-1.03} \approx 282,196.34
$$

The total salary is about $\mathbf{\$ 2 8 2 , 1 9 6}$.

