For each of the following sequences
a. write the next 3 terms of the sequence;
b. determine whether the sequence is arithmetic, geometric, or neither; and
c. write an explicit formula for the sequence;

1. $3,6,9,12,15, \ldots$
a. 18, 21, 24
b. arithmetic
c. $\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
2. $3,6,12,24,48, \ldots$
a. 96, 192, 384
b. geometric
c. $a_{n}=3(2)^{(n-1)}$
3. $3,6,11,18,27, \ldots$
a. 38, 51, 66
b. neither
c. $a_{n}=n^{2}+2$

For each of the following sequences
a. write the next 3 terms of the sequence;
b. determine whether the sequence is arithmetic or geometric; and
c. write a recursive formula for the sequence;
7. $5,10,20,40, \ldots$
a. $80,160,320$
b. geometric
c. $\mathrm{a}_{1}=5 ; \mathrm{a}_{\mathrm{n}+1}=\mathbf{2} \mathrm{a}_{\mathrm{n}}$
8. $5,10,15,20, \ldots$
a. $25,30,35$
b. arithmetic
c. $\mathrm{a}_{1}=5 ; \mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+\mathbf{5}$

For each of the following sequences
a. write the first 5 terms of the sequence; and
b. determine whether the sequence is arithmetic, geometric or neither.
11. $a_{1}=3 ; a_{n+1}=a_{n}+5$
a. $3,8,13,18,23$
b. arithmetic
12. $a_{1}=3 ; a_{n+1}=5 a_{n}$
a. $3,15,75,375,1875$
b. geometric
16. $a_{n}=2 n$
a. $2,4,6,8,10$
b. arithmetic
18. $a_{n}=2(3)^{(n-1)}$
a. $2,6,18,54,162$
b. geometric

