General Algebra 2 Class Worksheet #1 Unit 10 page 1

Sequence (informal definition) : A set of numbers in a specific order.

Examples of sequences:

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Each number is called a <u>term</u> of the sequence.

Notation

We will use

 \mathbf{a}_1 to represent the first term of any sequence

 a_2 to represent the second term of any sequence

a, to represent the third term of any sequence

 \mathbf{a}_{A} to represent the fourth term of any sequence

In general, a_n is used to represent the n_{th} term of any sequence.

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a_n as a function of n.

Examples of explicit formulas:

Definition	Sequence
$a_n = 5n$	5, 10, 15, 20, 25, 30,
$a_n = 2n + 3$	5, 7, 9, 11, 13, 15,
$a_n = 2^n$	2, 4, 8, 16, 32, 64,

General Algebra 2 Class Worksheet #1 Unit 10 page 2 A recursive formula tells you the value of a_1 and also gives a_{n+1} as a function of a_n . a_{n+1} is the term that follows a_n (the next term).

Examples of recursive formulas:

Definition		Sequence
$a_1 = 5$	$\mathbf{a}_{n+1} = \mathbf{a}_n + 5$	5, 10, 15, 20, 25, 30,
$a_1 = 5$	$\mathbf{a}_{n+1} = \mathbf{a}_n + 2$	5, 7, 9, 11, 13, 15,
a ₁ = 2	$\mathbf{a}_{n+1} = 2\mathbf{a}_n$	2, 4, 8, 16, 32, 64,

Problems:

Use the given formula to write the first 5 terms of each sequence.

1.	$a_n = 2n - 1$	
2.	$\mathbf{a}_{n} = \mathbf{n}^{2}$	
3.	$a_n = 2(3)^{(n-1)}$	
4.	$a_1 = 3$; $a_{n+1} = a_n + 2.5$	
5.	$a_1 = 32$; $a_{n+1} = 0.5a_n$	
6.	$a_1 = 10$; $a_{n+1} = a_n - 2$	
Writ	te an explicit formula for each	sequence.
7.	3, 6, 9, 12, 15, 18, 21,	
8.	0, 3, 8, 15, 24, 35, 48,	
9.	3, 9, 27, 81, 243, 729,	
Writ	te a recursive formula for each	sequence.
10.	4, 6, 8, 10, 12, 14, 16,	
11.	3, 6, 12, 24, 48, 96, 192,	
12.	0, 1, 3, 7, 15, 31, 63, 127,	