General Algebra II

Lesson \#2 Unit 1

Class CWS \#2

For Worksheets \#3 \& \#4

General Algebra II Unit 1 Intervals

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. So, what is a convex set?

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons
Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons
Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons

Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons
Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons
Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons
Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.

Convex polygons
Non-convex polygons

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Consider geometric shapes called polygons. They can be convex or non-convex. Here some examples of each.
Convex polygons
Non-convex polygons

A polygon is a convex polygon if and only if its interior is a convex set of points.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. So, what is a convex set?

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set. Draw a line segment connecting those two points.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set. Draw a line segment connecting those two points.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set. Draw a line segment connecting those two points. Is the line segment you drew a subset of the set?

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set. Draw a line segment connecting those two points. Is the line segment you drew a subset of the set? (Is every point on the line segment also in the set?)

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set. Draw a line segment connecting those two points. Is the line segment you drew a subset of the set? (Is every point on the line segment also in the set?) If the answer to this question is yes no matter which two points you start with, then the set of points is a convex set.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.
So, what is a convex set?
Here is the test for a convex set of points. If a set of points contains more than one point you can use this simple test. First, chose any two points in the set. Draw a line segment connecting those two points. Is the line segment you drew a subset of the set? (Is every point on the line segment also in the set?) If the answer to this question is yes no matter which two points you start with, then the set of points is a convex set.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\text { a consider convex sets of real numbers. }}$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\Theta}$ consider convex sets of real numbers.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\Theta}$ consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$
3. $x>-2$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$
3. $x>-2$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$
3. $\mathrm{x}>-2$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$
3. $x>-2$
4. $x \geq-2$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$
3. $x>-2$
4. $x \geq-2$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Basic inequalities define convex sets of real numbers, intervals.
Graph the following intervals.

1. $\mathrm{x}<3$
2. $\mathrm{x} \leq 3$
3. $\mathrm{x}>-2$
4. $x \geq-2$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letô consider convex sets of real numbers.

Continued inequalities also define intervals.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$
8. $-4<x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$
8. $-4<x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now letố consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$
8. $-4<x \leq 3$

General Algebra II Unit 1 Intervals

Any convex set of real numbers is called an interval. Now let $\hat{\varrho}$ consider convex sets of real numbers.

Continued inequalities also define intervals.
Graph the following intervals.
5. $-4<x<3$
7. $-4 \leq x<3$
6. $-4 \leq x \leq 3$
8. $-4<x \leq 3$

General Algebra II Unit 1 Intervals

Interval Notation:

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<x<3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathrm{~S}=(\mathbf{- 4 , 3)}$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<x<3 \quad \mathbf{S}=(-4,3)$

2. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<x<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x \leq 3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathrm{~S}=(\mathbf{- 4 , 3)}$

2. $-4 \leq x \leq 3 \quad S=$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathrm{~S}=(\mathbf{- 4 , 3)}$

2. $-4 \leq x \leq 3 \quad S=[-4,3]$

3. $-4 \leq x<3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x \leq 3 \quad S=[-4,3]$

3. $-4 \leq x<3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq \mathrm{x} \leq 3 \quad \mathrm{~S}=[-4,3]$

3. $-4 \leq x<3 \quad S=$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq \mathrm{x} \leq 3 \quad \mathrm{~S}=[-4,3]$

3. $-4 \leq x<3 \quad S=[$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq \mathrm{x} \leq 3 \quad \mathrm{~S}=[-4,3]$

3. $-4 \leq x<3 \quad S=[-4$,

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq \mathrm{x} \leq 3 \quad \mathrm{~S}=[-4,3]$

3. $-4 \leq \mathrm{x}<3 \quad \mathrm{~S}=[-4,3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq \mathrm{x} \leq 3 \quad \mathrm{~S}=[-4,3]$

3. $-4 \leq x<3 \quad S=[-4,3)$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x \leq 3 \quad S=[-4,3]$

3. $-4 \leq x<3 \quad S=[-4,3)$

4. $-4<x \leq 3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x \leq 3 \quad S=[-4,3]$

3. $-4 \leq x<3 \quad S=[-4,3)$

4. $-4<x \leq 3$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x \leq 3 \quad S=[-4,3]$

3. $-4 \leq x<3 \quad S=[-4,3)$

4. $-4<x \leq 3 \quad S=$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x \leq 3 \quad S=[-4,3]$

3. $-4 \leq x<3 \quad S=[-4,3)$

4. $-4<x \leq 3 \quad S=($

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<\mathrm{x}<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

These are examples of bounded intervals.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<x<3 \quad \mathbf{S}=(-4,3)$

These are examples of bounded intervals.

Bounded intervals have

 two endpoints.
General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

1. $-4<x<3 \quad \mathbf{S}=(\mathbf{- 4 , 3})$

2. $-4 \leq x<3 \quad S=[-4,3)$

3. $-4<\mathrm{x} \leq 3 \quad \mathrm{~S}=(\mathbf{- 4 , 3]}$

These are examples of bounded intervals.

Bounded intervals have

 two endpoints.Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $\mathrm{x}>-4$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $x>-4 \quad S=$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $x>-4 \quad S=($

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $x>-4 \quad S=(-4$,

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $x>-4 \quad S=(-4, \infty$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, \mathbf{3})$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $\mathrm{x}>-4 \quad \mathrm{~S}=(-4, \infty)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

6. $\mathrm{x} \leq 3 \quad \mathrm{~S}=(-\infty, 3]$

7. $\mathrm{x}>-4 \quad \mathrm{~S}=(-4, \infty)$

8. $\mathrm{x} \geq-4$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. Consider the following examples.
5. $\mathrm{x}<3 \quad \mathrm{~S}=(-\infty, 3)$

Unbounded intervals have less than two endpoints.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

$$
S=\{1\}
$$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

$$
S=\{1\}
$$

3. The null set is considered to be an interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

3. The null set is considered to be an interval.

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

3. The null set is considered to be an interval.

$$
S=\{ \}
$$

General Algebra II Unit 1 Intervals

Interval Notation: Intervals can be defined using special notation. There are three other intervals to consider.

1. The entire set of real numbers is an unbounded interval.

2. A set containing exactly one number is an interval.

3. The null set is considered to be an interval.

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

1. (a)
(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

1. (a) $x \leq-2$
(b) $\quad($

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

1. (a) $x \leq-2$
(b) \quad ($-\infty$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

1. (a) $\quad x \leq-2$
(b) $\quad(-\infty$,

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

1. (a) $x \leq-2$
(b) $\quad(-\infty,-2$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

1. (a) $x \leq-2$
(b) $\quad(-\infty,-2]$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a)
(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) -5
(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 2. (a) }-5 \leq x \leq
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) $-5 \leq x \leq 4$
(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) $-5 \leq x \leq 4$
(b) $\quad[$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) $-5 \leq x \leq 4$
(b) $\quad[-5$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) $-5 \leq x \leq 4$
(b) $[-5$,

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) $-5 \leq x \leq 4$
(b) $[-5,4$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
2. (a) $-5 \leq x \leq 4$
(b) $[-5,4]$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
3. (a)
(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 3. (a) } \quad \mathbf{x}>
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 3. (a) } \quad x>2
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 3. (a) } \quad x>2
$$

(b) $\quad(2$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 3. (a) } \quad x>2
$$

(b) ($2, \infty$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 3. (a) } \frac{x>2}{\text { (b) } \quad(2, \infty)}
$$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.
4. (a)
(b)

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 4. (a) }-1
$$

(b)

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 4. (a) }-1<
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 4. (a) }-1<x
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 4. (a) }-1<x<
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 4. (a) }-1<x<4
$$

(b) \qquad

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\text { 4. (a) }-1<x<4
$$

(b) $\quad($

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\begin{aligned}
& \text { 4. (a) } \frac{-1<x<4}{(-1} \\
& \text { (b) }-\frac{1}{4}
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\begin{aligned}
& \text { 4. (a) } \frac{-1<x<4}{(-1,} \\
& \text { (b) }-\frac{1,}{}
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\begin{aligned}
& \text { 4. (a) } \frac{-1<x<4}{(-1,4} \\
& \text { (b) }-\frac{(-1,4}{}
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

For each of the following graphs, (a) write an appropriate inequality and (b) represent the graph using interval notation.

$$
\begin{aligned}
& \text { 4. (a) } \frac{-1<x<4}{(-1,4)} \\
& \text { (b) }-\quad(-1,4)
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. $(-2, \infty)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. $(-2, \infty)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. $(-2, \infty)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. ($-2, \infty$)
(a) $\quad \mathbf{X}$
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. $(-2, \infty)$
(a) $\quad \mathbf{x}>$
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. $(-2, \infty)$
(a) $\quad x>-2$
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
5. $(-2, \infty)$
(a) $\quad x>-2$
(b) unbounded
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) 3
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) $3<$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) $3<x$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) $\quad 3<$ x $<$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) $3<x<5$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
6. $(3,5)$
(a) $3<x<5$
(b) bounded
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) \qquad
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) $\quad \mathrm{X}$
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) $\quad \mathbf{x} \leq$
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) $\quad x \leq 4$
(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
7. $(-\infty, 4]$
(a) $\quad x \leq 4$
(b) unbounded
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. $[-3,0]$
(a)

(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. $[-3,0]$
(a)

(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. $[-3,0]$
(a)

(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. $[-3,0]$
(a)

(b) \qquad
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. [-3, 0]
(a) -3
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. [-3, 0]
(a) $-3 \leq$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. [-3, 0]
(a) $-3 \leq x$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. [-3, 0]
(a) $-3 \leq x \leq$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. [-3, 0]
(a) $-3 \leq x \leq 0$
(b)
(c)

General Algebra II CWS \#2 Unit 1

For each of the following intervals, (a) write an appropriate inequality, (b) tell whether it is bounded or unbounded, and (c) sketch its graph.
8. [-3, 0]
(a) $-3 \leq x \leq 0$
(b) bounded
(c)

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } 6 x-15 \leq 9
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } 6 x-15 \leq 9
$$

6x

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{gathered}
6 x-15 \leq 9 \\
6 x \leq
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{gathered}
6 x-15 \leq 9 \\
6 x \leq 24 \\
x
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
& 6 x-15 \leq 9 \\
& 6 x \leq 24 \\
& x \leq 4 \\
& S=
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
& 6 x-15 \leq 9 \\
& 6 x \leq 24 \\
& x \leq 4 \\
& S=(
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4 \\
S= & (-\infty
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
& 6 x-15 \leq 9 \\
& 6 x \leq 24 \\
& x \leq 4 \\
& S=(-\infty, 4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4 \\
S= & -\infty, 4]
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 9. } \begin{aligned}
6 x-15 & \leq 9 \\
6 x & \leq 24 \\
x & \leq 4 \\
S= & (-\infty, 4]
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } 2 x+7>-1
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } 2 x+7>-1
$$

2x

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{gathered}
\text { 10. } 2 x+7>-1 \\
2 x>
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x+7 & >-1 \\
2 x & >-8
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x & +7>-1 \\
2 x & >-8
\end{aligned}
$$

$$
\mathbf{x}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{gathered}
\text { 10. } 2 x+7>-1 \\
2 x>-8 \\
x>
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x & +7>-1 \\
2 x & >-8 \\
x & >-4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x & +7>-1 \\
2 x & >-8 \\
x & >-4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x & +7>-1 \\
2 x & >-8 \\
x & >-4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x & +7>-1 \\
2 x & >-8 \\
x & >-4
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{gathered}
\text { 10. } 2 x+7>-1 \\
2 x>-8 \\
x>-4 \\
S=
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{gathered}
\text { 10. } 2 x+7>-1 \\
2 x>-8 \\
x>-4 \\
S=(
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{gathered}
2 x+7>-1 \\
2 x>-8 \\
x>-4 \\
S=(-4,
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{aligned}
2 x & +7>-1 \\
2 x & >-8 \\
x & >-4 \\
S= & (-4, \infty
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{gathered}
2 x+7>-1 \\
2 x>-8 \\
x>-4 \\
S=(-4, \infty)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 10. } \begin{gathered}
2 x+7>-1 \\
2 x>-8 \\
x>-4 \\
S=(-4, \infty)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. }-8 x+12 \leq 28
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 11. }-8 x+12 \leq 28 \\
& -8 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x+12 & \leq 28 \\
-8 x & \leq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x+12 & \leq 28 \\
-8 x & \leq 16
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x+12 & \leq 28 \\
-8 x & \leq 16
\end{aligned}
$$

$$
\mathbf{x}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 11. }-\mathbf{8 x}+12 \leq 28 \\
& -8 x \leq 16 \\
& \mathbf{x} \geq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x & +12 \leq 28 \\
-8 x & \leq 16 \\
x & \geq-2
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x & +12 \leq 28 \\
-8 x & \leq 16 \\
x & \geq-2
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x & +12 \leq 28 \\
-8 x & \leq 16 \\
x & \geq-2
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x & +12 \leq 28 \\
-8 x & \leq 16 \\
x & \geq-2
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
&-8 x+12 \leq 28 \\
&-8 x \leq 16 \\
& x \geq-2 \\
& S=
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
&-8 x+12 \leq 28 \\
&-8 x \leq 16 \\
& x \geq-2 \\
& S=[
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
-8 x & +12 \leq 28 \\
-8 x & \leq 16 \\
x & \geq-2 \\
S= & {[-2,}
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
&-8 x+12 \leq 28 \\
&-8 x \leq 16 \\
& x \geq-2 \\
& S=[-2, \infty
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
&-8 x+12 \leq 28 \\
&-8 x \leq 16 \\
& x \geq-2 \\
& S=[-2, \infty)
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 11. } \begin{aligned}
&-8 x+12 \leq 28 \\
&-8 x \leq 16 \\
& x \geq-2 \\
& S=[-2, \infty)
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. }-4 x-18>-6
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 12. }-4 x-18>-6 \\
& -4 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{aligned}
&-4 x-18>-6 \\
&-4 x>12
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{aligned}
&-4 x-18>-6 \\
&-4 x>12
\end{aligned}
$$

x

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<-3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{aligned}
-4 x & -18>-6 \\
-4 x & >12 \\
x & <-3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{aligned}
-4 x & -18>-6 \\
-4 x & >12 \\
x & <-3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{aligned}
-4 x & -18>-6 \\
-4 x & >12 \\
x & <-3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{array}{cc}
\text { 12. }-4 x-18>-6 \\
& -4 x>12 \\
& x<-3 \\
\hline
\end{array}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<-3 \\
S=(
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<-3 \\
S=(-\infty,
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<-3 \\
S=(-\infty,-3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<-3 \\
S=(-\infty,-3)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 12. } \begin{gathered}
-4 x-18>-6 \\
-4 x>12 \\
x<-3 \\
S=(-\infty,-3)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } 7 x-8<2 x+7
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } 7 x-8<2 x+7
$$

$$
5 x
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 13. } 7 x-8<2 x+7 \\
& 5 x<
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 13. } 7 x-8<2 x+7 \\
& 5 x<15
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 13. } 7 x-8<2 x+7 \\
& 5 x<15
\end{aligned}
$$

$$
\mathbf{x}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x & -8<2 x+7 \\
5 x & <15 \\
x & <
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x & -8 \\
5 x & <2 x+7 \\
x & <3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x-8 & <2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x-8 & <2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x-8 & <2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x-8 & <2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

$$
\mathbf{S}=
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x-8 & <2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

$$
S=(
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x & -8<2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

$$
\mathbf{S}=(-\infty,
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{gathered}
7 x-8<2 x+7 \\
5 x<15 \\
x<3 \\
S=(-\infty, 3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{gathered}
7 x-8<2 x+7 \\
5 x<15 \\
x<3 \\
S=(-\infty, 3)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 13. } \begin{aligned}
7 x-8 & <2 x+7 \\
5 x & <15 \\
x & <3
\end{aligned}
$$

$$
S=(-\infty, 3)
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } 4(3 x+2)-2(x+5) \geq 8
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } \quad 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-10
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-10 \geq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-10 \geq 8
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-10 \geq 8 \\
& 10 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-10 \geq 8 \\
& 10 x-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 x+8-2 x-10 \geq 8 \\
& 10 x-2
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& \text { 10x }
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq 10
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } 4(3 x+2)-2(x+5) \geq 8 ~ 子 \begin{gathered}
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8 \\
10 x \geq 10 \\
x
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{aligned}
4(3 x+2)-2(x+5) & \geq 8 \\
12 x+8-2 x-10 & \geq 8 \\
10 x-2 & \geq 8 \\
10 x & \geq 10 \\
x & \geq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{aligned}
4(3 x+2)-2(x+5) & \geq 8 \\
12 x+8-2 x-10 & \geq 8 \\
10 x-2 & \geq 8 \\
10 x & \geq 10 \\
x & \geq 1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq 10 \\
& \mathrm{x} \geq 1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq 10 \\
& \mathrm{x} \geq 1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq 10 \\
& \mathrm{x} \geq 1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8 \\
10 x \geq 10 \\
x \geq 1 \\
S=
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq 10 \\
& x \geq 1 \\
& \text { S = [}
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8 \\
10 x \geq 10 \\
x \geq 1 \\
S=[1
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8 \\
10 x \geq 10 \\
x \geq 1 \\
S=[1,
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 14. } 4(3 x+2)-2(x+5) \geq 8 \\
& 12 \mathrm{x}+8-2 \mathrm{x}-10 \geq 8 \\
& 10 x-2 \geq 8 \\
& 10 x \geq 10 \\
& x \geq 1 \\
& S=[1, \infty
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8 \\
10 x \geq 10 \\
x \geq 1 \\
S=[1, \infty)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 14. } \begin{gathered}
4(3 x+2)-2(x+5) \geq 8 \\
12 x+8-2 x-10 \geq 8 \\
10 x-2 \geq 8 \\
10 x \geq 10 \\
x \geq 1 \\
S=[1, \infty)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } 5(3 x+1)-4(5 x-3)>2
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } 5(3 x+1)-4(5 x-3)>2
$$

15x

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } 5(3 x+1)-4(5 x-3)>2
$$

15x +

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 15. } \\
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{aligned}
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 15. } \\
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-20 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 15. } \\
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-20 x+
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{aligned}
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-20 x+12
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{aligned}
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-20 x+12>
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{aligned}
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-20 x+12>2
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{aligned}
& 5(3 x+1)-4(5 x-3)>2 \\
& 15 x+5-20 x+12>2 \\
& -5 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3
\end{gathered}
$$

$$
\mathbf{S}=
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3 \\
S=(
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3 \\
S=(-\infty
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3 \\
S=(-\infty,
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3 \\
S=(-\infty, 3
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3 \\
S=(-\infty, 3)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 15. } \begin{gathered}
5(3 x+1)-4(5 x-3)>2 \\
15 x+5-20 x+12>2 \\
-5 x+17>2 \\
-5 x>-15 \\
x<3 \\
S=(-\infty, 3)
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1)
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{gathered}
\text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
4 x+
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{gathered}
3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
4 x+3 \leq-6 x-7 \\
10 x
\end{gathered}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
3(4 x-3)-4(2 x-3) & \leq 4(x-3)-5(2 x-1) \\
12 x-9-8 x+12 & \leq 4 x-12-10 x+5 \\
4 x+3 & \leq-6 x-7 \\
10 x & \leq-10
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
3(4 x-3)-4(2 x-3) & \leq 4(x-3)-5(2 x-1) \\
12 x-9-8 x+12 & \leq 4 x-12-10 x+5 \\
4 x+3 & \leq-6 x-7 \\
10 x & \leq-10
\end{aligned}
$$

x

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\begin{aligned}
& \text { 16. } 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=(
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=(-\infty
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=(-\infty,
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=(-\infty,-1
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=(-\infty,-1]
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Solve each of the following inequalities. Then express the solution set using interval notation and sketch its graph.

$$
\text { 16. } \begin{aligned}
& 3(4 x-3)-4(2 x-3) \leq 4(x-3)-5(2 x-1) \\
& 12 x-9-8 x+12 \leq 4 x-12-10 x+5 \\
& 4 x+3 \leq-6 x-7 \\
& 10 x \leq-10 \\
& x \leq-1 \\
& S=(-\infty,-1]
\end{aligned}
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 17. }[1,4) \cap(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

17. $[1,4) \cap(-2,3]=\underline{[1,3]}$
 intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

17. $[1,4) \cap(-2,3]=\underline{[1,3]}$
 intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=\text {. }
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
18. $[1,4) \cup(-2,3]=$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=\text {. }
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 18. }[1,4) \cup(-2,3]=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

18. $[1,4) \cup(-2,3]=$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

18. $[1,4) \cup(-2,3]=\underline{(-2,4)}$
 union

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

18. $[1,4) \cup(-2,3]=\underline{(-2,4)}$
 union

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=\text {. }
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \cap[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
19. $(-\infty, 4) \cap[-3, \infty)=$
intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
19. $(-\infty, 4) \cap[-3, \infty)=$
intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
19. $(-\infty, 4) \cap[-3, \infty)=$
intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
19. $(-\infty, 4) \cap[-3, \infty)=$
intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
19. $(-\infty, 4) \cap[-3, \infty)=$ [
intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.
19. $(-\infty, 4)$ 〇[$-3, \infty)=\underline{[-3}$
intersection

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \text { 亿 } \underset{\text { intersection }}{ }[-3, \infty)=\underline{[-3,4)}
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 19. }(-\infty, 4) \text { 亿 }[-3, \infty)=\underline{[-3,4)}
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

20. $(-\infty, 4) \cup[-3, \infty)=$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=(-\infty
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=\underline{(-\infty, \infty}
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=\underline{(-\infty, \infty)}
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

$$
\text { 20. }(-\infty, 4) \cup[-3, \infty)=\underline{(-\infty, \infty)}
$$

General Algebra II CWS \#2 Unit 1

Express each of the following as a single interval.

20. $(-\infty, 4) \cup[-3, \infty)=\underline{(-\infty, \infty)}$
 union

