General Algebra II

Lesson \#1 Unit 1

Class CWS \#1

For Worksheets \#1 \& \#2

General Algebra II CWS \#1 Unit 1

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{ll}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21
\end{array}
$$

3. $9 x+19=7$
4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{ll}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21
\end{array}
$$

5x

$$
\text { 3. } 9 x+19=7 \quad \text { 4. } 6 x-11=4
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cl}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x= &
\end{array}
$$

$$
\text { 3. } 9 x+19=7
$$

$$
\text { 4. } 6 x-11=4
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 &
\end{array}
$$

$$
\text { 3. } 9 x+19=7
$$

$$
\text { 4. } 6 x-11=4
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cl}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x= \\
\text { 3. } 9 x+19=7 & \text { 4. } 6 x-11=4
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 \\
x=\frac{3}{5} & \\
\text { 3. } 9 x+19=7 & \text { 4. } 6 x-11=4
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cl}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} &
\end{array}
$$

3. $9 x+19=7$
4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 1. } \begin{gathered}
5 x+4=7 \\
5 x=3 \\
x=\frac{3}{5}
\end{gathered}
$$

3. $9 x+19=7$
4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 1. } \begin{gathered}
5 x+4=7 \\
5 x=3 \\
x=\frac{3}{5}
\end{gathered}
$$

3. $9 x+19=7$
4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & 8 x=26 \\
x=\frac{3}{5} &
\end{array}
$$

3. $9 x+19=7$

4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & 8 x=26 \\
x=\frac{3}{5} & x=
\end{array}
$$

3. $9 x+19=7$
4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & 8 x=26 \\
x=\frac{3}{5} & x=\frac{13}{4}
\end{array}
$$

3. $9 x+19=7$

4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & 8 x=26 \\
x=\frac{3}{5} & x=\frac{13}{4}
\end{array}
$$

3. $9 x+19=7$

4. $6 x-11=4$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& \\
\text { 3. } 9 x+19=7 \\
9 x & \text { 4. } 6 x-11=4 \\
9 x
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& \\
& \text { 4. } 6 x=\frac{13}{4} \\
\text { 3. } 9 x+19=7 & \\
& 9 x=
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& \text { 4x }=26 \\
& \text { 4. } 6 x-11=4 \\
\text { 3. } 9 x+19=7 &
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 1. } 5 x+4=7 \\
& 5 \mathrm{x}=3 \\
& x=\frac{3}{5} \\
& \text { 2. } 8 x-5=21 \\
& 8 x=26 \\
& x=\frac{13}{4} \\
& \text { 3. } 9 x+19=7 \\
& \text { 4. } 6 x-11=4 \\
& 9 x=-12 \\
& \mathbf{x}=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& \\
& \\
\text { 3. } 9 x=26 \\
9 x+19=7 & \text { 4. } 6 x-11=4 \\
9 x=-12 &
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 1. } 5 x+4=7 \\
& 5 \mathrm{x}=3 \\
& x=\frac{3}{5} \\
& \text { 2. } 8 x-5=21 \\
& 8 x=26 \\
& x=\frac{13}{4} \\
& \text { 3. } 9 x+19=7 \\
& \text { 4. } 6 x-11=4 \\
& 9 x=-12 \\
& x=\frac{-4}{3}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 1. } 5 x+4=7 \\
& 5 \mathrm{x}=3 \\
& x=\frac{3}{5} \\
& \text { 2. } 8 x-5=21 \\
& 8 x=26 \\
& x=\frac{13}{4} \\
& \text { 3. } 9 x+19=7 \\
& \text { 4. } 6 x-11=4 \\
& 9 x=-12 \\
& \text { 6x } \\
& x=\frac{-4}{3}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{ccc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & & 8 x=26 \\
x=\frac{3}{5} & & x=\frac{13}{4} \\
& \text { 4. } 6 x-11=4 \\
\text { 3. } 9 x+19=7 & 6 x= \\
9 x=-12 & & \\
& x=\frac{4}{3} &
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& \\
& \\
& \\
\text { 3. } & 9 x=\frac{13}{4}
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& 8 x=26 \\
& \\
\text { 3. } 9 x+19=7 & \text { 4. } 6 x-11=4 \\
9 x=-12 & \\
& 6 x=15 \\
& x=\frac{4}{3}
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 1. } 5 x+4=7 & \text { 2. } 8 x-5=21 \\
5 x=3 & \\
x=\frac{3}{5} & \\
& 8 x=26 \\
& \\
\text { 3. } 9 x+19=7 & \text { 4. } 6 x-11=4 \\
9 x=-12 & \\
& 6 x=15 \\
& x=\frac{4}{3}
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 1. } 5 x+4=7 \\
& 5 \mathrm{x}=3 \\
& x=\frac{3}{5} \\
& \text { 2. } 8 x-5=21 \\
& 8 x=26 \\
& x=\frac{13}{4} \\
& \text { 3. } 9 x+19=7 \\
& \text { 4. } 6 x-11=4 \\
& 9 x=-12 \\
& x=\frac{-4}{3} \\
& 6 x=15 \\
& x=\frac{5}{2}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } 7 x+2=3 x+26 \text { 6. } 9 x-13=x+5
$$

7. $12 x+25=7 x-15 \quad$ 8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } 7 x+2=3 x+26 \\
& 4 x
\end{aligned} \text { 6. } 9 x-13=x+5
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{aligned}
7 x+2 & =3 x+26 \\
4 x & =
\end{aligned}
$$

7. $12 x+25=7 x-15 \quad$ 8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{aligned}
7 x+2 & =3 x+26 \\
4 x & =24
\end{aligned}
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{aligned}
7 x+2 & =3 x+26 \quad \text { 6. } 9 x-13=x+5 \\
4 x & =24 \\
x & =
\end{aligned}
$$

7. $12 x+25=7 x-15 \quad$ 8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{aligned}
7 x+2 & =3 x+26 \quad \text { 6. } 9 x-13=x+5 \\
4 x & =24 \\
x & =6
\end{aligned}
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{aligned}
7 x+2 & =3 x+26 \quad \text { 6. } 9 x-13=x+5 \\
4 x & =24 \\
x & =6
\end{aligned}
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & & 8 x \\
x & =6
\end{array}
$$

7. $\mathbf{1 2 x}+25=7 x-15$
8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & & 8 x
\end{array}\right)
$$

7. $\mathbf{1 2 x}+25=7 x-15$
8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } 7 x+2=3 x+26 \\
& 4 x=24 \\
& x=6 \\
& \text { 6. } 9 x-13=x+5 \\
& 8 \mathrm{x}=18
\end{aligned}
$$

7. $12 x+25=7 x-15 \quad$ 8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{array}{rlrl}
7 \mathrm{x}+2 & =3 \mathrm{x}+26 & \text { 6. } 9 \mathrm{x}-13 & =\mathrm{x}+5 \\
4 \mathrm{x} & =24 & 8 \mathrm{x} & =18 \\
\mathrm{x} & =6 & & x
\end{array}
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & x & =\frac{9}{4}
\end{array}
$$

7. $12 x+25=7 x-15 \quad$ 8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $11 x-5=5 x-20$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$ 5x

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

5x $=$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

$$
5 x=-40
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =-8
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15 \quad$ 8. $\quad 11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =-8
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15$
8. $11 x-5=5 x-20$

$$
\begin{gathered}
5 x=-40 \\
x=-8
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15$
8. $11 x-5=5 x-20$

$$
\begin{gathered}
5 x=-40 \\
x=-8
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15$
8. $11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =-8
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15$
8. $11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =-8
\end{aligned}
$$

$$
\begin{aligned}
6 x & =-15 \\
x & =
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $\mathbf{1 2 x}+25=7 x-15$
8. $11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =-8
\end{aligned}
$$

$$
\begin{aligned}
6 x & =-15 \\
x & =\frac{-5}{2}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \left.\begin{array}{rlrl}
7 x+2 & =3 x+26 & \text { 6. } 9 x-13 & =x+5 \\
4 x & =24 & 8 x & =18 \\
x & =6 & & x
\end{array}\right)=\frac{9}{4} .
$$

7. $12 x+25=7 x-15$
8. $11 x-5=5 x-20$

$$
\begin{aligned}
5 x & =-40 \\
x & =-8
\end{aligned}
$$

$$
\begin{gathered}
6 x=-15 \\
x=\frac{-5}{2}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2(3 x+5)+3(x-4)=6
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2(3 x+5)+3(x-4)=6 \\
& 6 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2(3 x+5)+3(x-4)=6 \\
& 6 x+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2(3 x+5)+3(x-4)=6 \\
& 6 x+10
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2(3 x+5)+3(x-4)=6 \\
& 6 x+10+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{aligned}
2(3 x+5) & +3(x-4) \\
6 x+10 & =6 \\
6 x-12 & =
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{aligned}
2(3 x+5)+3(x-4) & =6 \\
6 x+10 & +3 x-12
\end{aligned}=6
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2=6
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2=6 \\
9 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2(3 x+5)+3(x-4)=6
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2=6 \\
9 x=8
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2=6 \\
9 x=8 \\
x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2(3 x+5)+3(x-4)=6
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2(3 x+5)+3(x-4)=6 \\
6 x+10+3 x-12=6 \\
9 x-2=6 \\
9 x=8 \\
x=\frac{8}{9}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } 4(x+3)+3(2 x+1)=20
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& \text { 4x }
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } 4(x+3)+3(2 x+1)=20 ~ 子 ~ 4 x+4 ~ l
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
& 4(x+3)+3(2 x+1)=20 \\
& 4 x+12
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
& 4(x+3)+3(2 x+1)=20 \\
& 4 x+12+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
& 4(x+3)+3(2 x+1)=20 \\
& 4 x+12+6 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
& 4(x+3)+3(2 x+1)=20 \\
& 4 x+12+6 x+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
4(x+3) & +3(2 x+1)=20 \\
4 x & +12+6 x+3
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
4(x+3) & +3(2 x+1)=20 \\
4 x & +12+6 x+3=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{aligned}
& 4(x+3)+3(2 x+1)=20 \\
& 4 x+12+6 x+3=20
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 x+12+6 x+3=20 \\
& \text { 10x }
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 \mathrm{x}+12+6 \mathrm{x}+3=\mathbf{2 0} \\
& 10 \mathrm{x}+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 \mathrm{x}+12+6 \mathrm{x}+3=20 \\
& 10 x+15
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 \mathrm{x}+12+6 \mathrm{x}+3=20 \\
& 10 x+15=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 x+12+6 x+3=20 \\
& 10 x+15=20
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{gathered}
4(x+3)+3(2 x+1)=20 \\
4 x+12+6 x+3=20 \\
10 x+15=20 \\
10 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 \mathrm{x}+12+6 \mathrm{x}+3=20 \\
& 10 x+15=20 \\
& 10 x=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 \mathrm{x}+12+6 \mathrm{x}+3=20 \\
& 10 x+15=20 \\
& 10 x=5
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 10. } 4(x+3)+3(2 x+1)=20 \\
& 4 \mathrm{x}+12+6 \mathrm{x}+3=20 \\
& 10 x+15=20 \\
& 10 x=5 \\
& \mathbf{x}=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{gathered}
4(x+3)+3(2 x+1)=20 \\
4 x+12+6 x+3=20 \\
10 x+15=20 \\
10 x=5 \\
x=\frac{1}{2}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{gathered}
4(x+3)+3(2 x+1)=20 \\
4 x+12+6 x+3=20 \\
10 x+15=20 \\
10 x=5 \\
x=\frac{1}{2}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 11. } 5(2 x-3)+2(x+2)=6
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6 \\
& 12 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 11. } 5(2 x-3)+2(x+2)=6 \\
10 x-15+2 x+4=6 \\
12 x-
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 11. } 5(2 x-3)+2(x+2)=6 \\
10 x-15+2 x+4=6 \\
12 x-11
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 11. } 5(2 x-3)+2(x+2)=6 \\
10 x-15+2 x+4=6 \\
12 x-11=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 11. } \begin{gathered}
5(2 x-3)+2(x+2)=6 \\
10 x-15+2 x+4=6 \\
12 x-11=6
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 11. } \begin{gathered}
5(2 x-3)+2(x+2)=6 \\
10 x-15+2 x+4=6 \\
12 x-11=6
\end{gathered}
$$

12x

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6 \\
& 12 \mathrm{x}-11=6 \\
& 12 x=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6 \\
& 12 \mathrm{x}-11=6 \\
& 12 x=17
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6 \\
& 12 \mathrm{x}-11=6 \\
& 12 x=17 \\
& \mathbf{x}=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6 \\
& 12 \mathrm{x}-11=6 \\
& 12 x=17 \\
& x=\frac{17}{12}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } 5(2 x-3)+2(x+2)=6 \\
& 10 x-15+2 x+4=6 \\
& 12 \mathrm{x}-11=6 \\
& 12 x=17 \\
& x=\frac{17}{12}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } 6(3 x-2)+5(2 x-3)=15
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{aligned}
& 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{aligned}
& 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-15
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{aligned}
6(3 x-2)+5(2 x-3) & =15 \\
18 x-12+10 x-15 & =
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{array}{r}
6(3 x-2)+5(2 x-3)=15 \\
18 x-12+10 x-15=15
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
18 x-12+10 x-15=15 \\
28 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{gathered}
6(3 x-2)+5(2 x-3)=15 \\
18 x-12+10 x-15=15 \\
28 x-
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{gathered}
6(3 x-2)+5(2 x-3)=15 \\
18 x-12+10 x-15=15 \\
28 x-27
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-15=15 \\
& 28 x-27=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } \begin{gathered}
6(3 x-2)+5(2 x-3)=15 \\
18 x-12+10 x-15=15 \\
28 x-27=15
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-15=15 \\
& 28 x-27=15 \\
& \text { 28x }
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-15=15 \\
& 28 x-27=15 \\
& \mathbf{2 8 x}=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-15=15 \\
& 28 x-27=15 \\
& 28 \mathrm{x}=42
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } 6(3 x-2)+5(2 x-3)=15015 \begin{gathered}
18 x-12+10 x-15=15 \\
28 x-27=15 \\
28 x=42 \\
x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 12. } 6(3 x-2)+5(2 x-3)=15 \\
& 18 x-12+10 x-15=15 \\
& 28 x-27=15 \\
& 28 x=42 \\
& x=\frac{3}{2}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 12. } 6(3 x-2)+5(2 x-3)=15015 \begin{gathered}
18 x-12+10 x-15=15 \\
28 x-27=15 \\
28 x=42 \\
x=\frac{3}{2}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } 4(3 x+5)-2(3 x+1)=15
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } 4(3 x+5)-2(3 x+1)=15
$$

12x

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 13. } 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 13. } 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 13. } 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-6 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } 4(3 x+5)-2(3 x+1)=15
$$

$$
12 x+20-6 x-
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-6 x-2
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-6 x-2=
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-6 x-2=15
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-6 x-2=15
\end{aligned}
$$

6x

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& 4(3 x+5)-2(3 x+1)=15 \\
& 12 x+20-6 x-2=15
\end{aligned}
$$

$$
6 x+
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } 4(3 x+5)-2(3 x+1)=150 \text { } \begin{gathered}
12 x+20-6 x-2=15 \\
6 x+18=15
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=15 \\
6 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=15 \\
6 x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=15 \\
6 x=-3
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=15 \\
6 x=-3 \\
x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=15 \\
6 x=-3 \\
x=\frac{-1}{2}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 13. } \begin{gathered}
4(3 x+5)-2(3 x+1)=15 \\
12 x+20-6 x-2=15 \\
6 x+18=15 \\
6 x=-3 \\
x=\frac{-1}{2}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

5x

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

5x +

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

$5 x+15$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

$5 x+15-$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

$$
5 x+15-21 x
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

$$
5 x+15-21 x+
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

$$
5 x+15-21 x+14
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9
$$

$$
5 x+15-21 x+14=
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{aligned}
5(x+3)-7(3 x-2) & =9 \\
5 x+15-21 x+14 & =9
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{aligned}
& 5(x+3)-7(3 x-2)=9 \\
& 5 x+15-21 x+14=9 \\
&-16 x
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=9
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=9 \\
-16 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=9 \\
-16 x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=9 \\
-16 x=-20
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } 5(x+3)-7(3 x-2)=9 ~ 子 \begin{gathered}
5 x+15-21 x+14=9 \\
-16 x+29=9 \\
-16 x=-20 \\
x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=9 \\
-16 x=-20 \\
x=\frac{5}{4}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 14. } \begin{gathered}
5(x+3)-7(3 x-2)=9 \\
5 x+15-21 x+14=9 \\
-16 x+29=9 \\
-16 x=-20 \\
x=\frac{5}{4}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
2x-3
\mathbf{X} (inches)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
$2 \mathbf{x}-3$ (inches)

$$
\mathbf{x} \text { (inches) }
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

2x-3 (inches)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

2x-3 (inches)

$\mathbf{P}=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
2x-3 (inches)

$\mathbf{P}=\mathbf{2 L}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
2x-3 (inches)

$\mathbf{P}=\mathbf{2 L}+$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
$2 \mathrm{x}-3$ (inches)

$$
\mathbf{x} \text { (inches) }
$$

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$P=2 L+2 W$
5 feet $=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6
\end{gathered}
$$

$P=2 L+2 W$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=
\end{gathered}
$$

5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66
\end{gathered}
$$

5 feet $=\mathbf{6 0}$ inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{aligned}
& 2 x-3 \text { (inches) } \\
& x \times \text { (inches) } \\
& P=2 L+2 W \\
& 5 \text { feet }=60 \text { inches }
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=2 \mathbf{L}+2 \mathbf{W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=60$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

5 feet $=\mathbf{6 0}$ inches
The rectangle is 19 inches long

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

The rectangle is 19 inches long and 11 inches wide.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
15. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

The rectangle is 19 inches long and 11 inches wide.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
soda

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
soda
hotdog

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
soda
hotdog
burger

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda
hotdog
burger

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda $\quad X$ (cents)
hotdog
burger

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda $\quad X$ (cents)
hotdog X
burger

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda $\quad X$ (cents)
hotdog $\quad \mathbf{x}+$
burger

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each
soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each
soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each
soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20风

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each
4(
soda $\quad X$ (cents)
hotdog $x+75 c$
burger $3 x-20$ c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each
4(3x
soda $\quad X$ (cents)
hotdog $x+75 c$
burger $3 x-20$ c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger 3x-20

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger $3 x-20$ c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger $3 x-20$ c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{ll}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 \not \subset\end{array}$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 ¢\end{array}$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $\quad 12 x-80$
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $\quad 12 x-80+$
hotdog $x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $\quad 12 x-80+3 x$
hotdog $\quad x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{ll}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 \not \subset\end{array}$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{ll}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 \not \subset\end{array}$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $12 x-80+3 x+225+$
hotdog $x+75 c$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $12 x-80+3 x+225+7 x$
hotdog $x+75 c$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $12 x-80+3 x+225+7 x=$ hotdog $x+75 c$ burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents) $12 x-80+3 x+225+7 x=1905$
hotdog $\quad x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $x+75 c$ burger 3x-20

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+
\end{gathered}
$$

hotdog $x+75 c$ burger 3x-20c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145
\end{gathered}
$$

hotdog $x+75 c$
burger 3x-20d

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\text { hotdog } \quad x+75 c
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=
\end{gathered}
$$

burger 3x-20风

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905
\end{gathered}
$$

burger 3x-20风

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\text { hotdog } \quad x+75 c
$$

$$
\text { burger } 3 x-20 ¢
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

X

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger 3x-20c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=\mathbf{1 7 6 0} \\
x=80 \\
x+75=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155 \\
3 x
\end{gathered}
$$

soda $\quad X$ (cents) hotdog $x+75 c$ burger 3x-20c

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155 \\
\mathbf{3 x}-
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger 3x-20¢

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155 \\
3 x-20
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155 \\
3 x-20=
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155 \\
\mathbf{3 x}-20=\mathbf{2 2 0}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each $\quad 4(3 x-20)+3(x+75)+7 x=1905$
soda $\quad x$ (cents) $\quad 12 x-80+3 x+225+7 x=1905$
hotdog $x+75 c$ burger 3x-20风

A soda costs 80¢ ,

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each $\quad 4(3 x-20)+3(x+75)+7 x=1905$
soda $\quad x$ (cents) $\quad 12 x-80+3 x+225+7 x=1905$
hotdog $\quad x+75 c$ burger 3x-20¢

A soda costs $80 ¢$, a hotdog costs \$1.55,

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each $\quad 4(3 x-20)+3(x+75)+7 x=1905$
soda $\quad x$ (cents) $\quad 12 x-80+3 x+225+7 x=1905$
hotdog $\quad x+75 c$ burger 3x-20¢

A soda costs $80 \mathfrak{c}$, a hotdog costs $\$ 1.55$, and a burger costs \$2.20.

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
16. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each $\quad 4(3 x-20)+3(x+75)+7 x=1905$
soda $\quad X$ (cents) $\quad 12 x-80+3 x+225+7 x=1905$
hotdog $\quad x+75 c$ burger 3x-20¢

A soda costs $80 \mathfrak{c}$, a hotdog costs $\$ 1.55$, and a burger costs \$2.20.

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
dimes
quarters

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes
quarters

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes 4x
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $4 x+$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value $¢$
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

\# of coins value \boldsymbol{c}

dimes $\quad 4 x+3 \quad 10$ (
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

\# of coins value \boldsymbol{c}

dimes $\quad 4 x+3 \quad 10(4 x$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

\# of coins value c

dimes $\quad 4 x+3 \quad 10(4 x+$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value $¢$
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value $¢$
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters $\quad \mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value $¢$
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters $\quad \mathbf{2 5 x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value \subset
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters
25x
total

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

\# of coins value $¢$

dimes

$$
4 x+3 \quad 10(4 x+3)
$$

quarters 25x total $1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value c $\quad 10($
dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters	x	$25 x$
	total	$1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\boldsymbol{c} \quad 10(4 x$
dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters	x	$25 x$
	total	$1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$\#$ of coins value $\boldsymbol{c} \quad 10(4 x+$

dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters | x | 25 x | |
| :--- | :--- | :---: |
| | total | $1200 ¢$ |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\# \text { of coins } \quad \text { value } ¢ \quad 10(4 x+3)
$$

dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters	x	$25 x$
	total	$1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $c \quad 10(4 x+3)+$
dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters | x | 25 x | |
| :--- | :--- | :---: |
| | total | $1200 ¢$ |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\# \text { of coins } \quad \text { value } ¢ \quad 10(4 x+3)+25 x
$$

dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters	x	$25 x$
	total	$1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\subset \quad 10(4 x+3)+25 x=$
dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters | x | 25 x | |
| :--- | :--- | :---: |
| | total | $1200 ¢$ |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\subset \quad 10(4 x+3)+25 x=1200$
dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters	x	$25 x$
	total	$1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\mathrm{c} \quad 10(4 x+3)+25 x=1200$
dimes $\quad 4 x+3 \quad 10(4 x+3) \quad 40 x$

quarters | \mathbf{x} | $\mathbf{2 5 x}$ |
| :--- | :--- |
| | total |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\subset \quad 10(4 x+3)+25 x=1200$

dimes $\quad 4 x+3 \quad 10(4 x+3) \quad 40 x+$ quarters | \mathbf{x} | $\mathbf{2 5 x}$ |
| :--- | :--- |
| | total |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\subset \quad 10(4 x+3)+25 x=1200$
dimes $\quad 4 x+3 \quad 10(4 x+3) \quad 40 x+30$

quarters | \mathbf{x} | $\mathbf{2 5 x}$ |
| :--- | :--- |
| | total |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $¢$	$\mathbf{1 0}(4 x+3)+25 x=1200$
dimes	$\mathbf{4 x}+3$	$\mathbf{1 0 (4 x}+3)$	$40 x+30+$
quarters	x	$25 x$	
	total	$1200 ¢$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\subset \quad 10(4 x+3)+25 x=1200$
dimes $\quad 4 x+3 \quad 10(4 x+3) \quad 40 x+30+25 x$

quarters | x | $25 x$ | |
| :--- | :--- | :---: |
| | total | $1200 ¢$ |

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $\mathrm{c} \quad 10(4 x+3)+25 x=1200$
dimes
quarters
$4 \mathrm{x}+3 \quad 10(4 \mathrm{x}+3)$ $40 x+30+25 x=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
dimes $4 x+3 \quad 10(4 x+3)$
$10(4 x+3)+25 x=1200$
$40 x+30+25 x=1200$
65x

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 \mathrm{x}+3)+25 \mathrm{x}=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+$
	total	1200 c	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$10(4 x+3)+25 x=1200$
dimes	$4 x+3$	$\mathbf{1 0 (4 x + 3)}$	$40 x+30+25 x=1200$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$65 x+30$
	total	$\mathbf{1 2 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $¢$	$10(4 x+3)+25 x=1200$
dimes	$4 x+3$	$\mathbf{1 0 (4 x + 3)}$	$40 x+30+25 x=1200$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$65 x+30=$
	total	$\mathbf{1 2 0 0} \boldsymbol{c}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+\mathbf{2 5 x}=1200$
	\mathbf{x}	25x	$65 x+30=1200$
	total	1200	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 x+30=1200$
	tota	1200	65x

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+25 x=1200$
dimes	$4 x+3$	$10(4 x+3)$	$40 x+30+25 x=1200$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$65 x+30=1200$
	total	$\mathbf{1 2 0 0} ¢$	$65 x=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 x+30=1200$
	tot	1200	$65 \mathrm{x}=1170$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0}$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			x

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0}$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			$\mathbf{x}=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

$$
\begin{gathered}
10(4 x+3)+25 x=1200 \\
40 x+30+25 x=1200 \\
65 x+30=1200 \\
65 x=1170 \\
x=18
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			4x

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0}(\mathbf{4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0} \propto$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			$\mathbf{x}=\mathbf{1 8}$
			$4 x+$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	x	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			$4 \mathrm{x}+3$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			$4 \mathrm{x}+3=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			$4 x+3=75$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

There are 18 quarters

$$
\begin{gathered}
10(4 x+3)+25 x=1200 \\
40 x+30+25 x=1200 \\
65 x+30=1200 \\
65 x=1170 \\
x=18 \\
4 x+3=\mathbf{7 5}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

There are 18 quarters and $\mathbf{7 5}$ dimes.

$$
\begin{aligned}
10(4 x+3) & +25 x=1200 \\
40 x+30 & +25 x=1200 \\
65 x+30 & =1200 \\
65 x & =1170 \\
\text { mes. } & =18 \\
4 x+3 & =\mathbf{7 5}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
17. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\# \text { of coins } \quad \text { value } \not \subset
$$

$$
4 x+3 \quad 10(4 x+3)
$$

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

.
There are 18 quarters and $\mathbf{7 5}$ dimes.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
short
middle

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
short
middle
long

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad \mathbf{x}$
middle
long

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad \mathbf{x}$
middle
long $\mathbf{3 x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad \mathbf{x}$
middle
long $\quad \mathbf{3 x}+$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad \mathbf{x}$
middle
long $\quad 3 x+2$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x$
long $\quad 3 x+2$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad x$
middle $\quad x+$
long $\quad 3 x+2$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

$$
x+(x+8)+(3 x+2)=120
$$

5x
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+
$$

middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

$$
\begin{gathered}
x+(x+8)+(3 x+2)=120 \\
5 x+10
\end{gathered}
$$

middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

$$
\begin{gathered}
x+(x+8)+(3 x+2)=120 \\
5 x+10=
\end{gathered}
$$

middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

$$
\begin{gathered}
x+(x+8)+(3 x+2)=120 \\
5 x+10=\mathbf{1 2 0}
\end{gathered}
$$

middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
middle
$x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
\mathbf{5 x}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
middle
$x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
middle

$$
x+8
$$

$$
\text { long } \quad 3 x+2
$$

total 120 inches ($\mathbf{1 0}$ feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

middle	$x+8$
long	$3 x+2$

total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
\mathbf{x}=
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
middle

$$
x+8
$$

$$
\text { long } \quad 3 x+2
$$

total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

middle	$x+8$
long	$\mathbf{3 x}+2$

total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
\mathbf{x}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

middle	$x+8$
long	$\mathbf{3 x}+2$

total 120 inches (10 feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

$$
\begin{array}{rc}
\text { middle } & x+8 \\
\text { long } & 3 x+2 \\
\hline
\end{array}
$$

total 120 inches (10 feet)

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

middle	$x+8$
long	$3 x+2$

total 120 inches (10 feet)

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X

middle	$x+8$
long	$\mathbf{3 x}+2$

total 120 inches (10 feet)

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)

short	x
middle	$x+8$
long	$3 x+2$
total	$\mathbf{1 2 0}$ inches (10 feet)

$$
\begin{gathered}
x+(x+8)+(3 x+2)=120 \\
5 x+10=120 \\
5 x=110 \\
x=\mathbf{2 2} \\
x+8=\mathbf{3 0} \\
\mathbf{3 x}
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
$\begin{array}{rc}\text { middle } & x+8 \\ \text { long } & \frac{3 x+2}{\text { total }} \\ & 120 \text { inches (10 feet) }\end{array}$

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
\mathbf{3 x}+
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
$\begin{array}{rc}\text { middle } & x+8 \\ \text { long } & \frac{3 x+2}{\text { total }} \\ & 120 \text { inches (10 feet) }\end{array}$

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
$\begin{array}{rc}\text { middle } & x+8 \\ \text { long } & \frac{3 x+2}{\text { total }}\end{array}$

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short
X
$\begin{array}{rc}\text { middle } & x+8 \\ \text { long } & \frac{3 x+2}{\text { total }} \\ & 120 \text { inches (10 feet) }\end{array}$

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
$\begin{aligned} \text { middle } & x+8 \\ \text { long } & \frac{3 x+2}{\text { total }} \\ & 120 \text { inches }(10 \text { feet })\end{aligned}$

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
\mathbf{x}=\mathbf{2 2}
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

The pieces measure 22 inches,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
$\begin{aligned} \text { middle } & x+8 \\ \text { long } & \frac{3 x+2}{\text { total }} \\ & 120 \text { inches }(10 \text { feet })\end{aligned}$

$$
\mathbf{x}+(\mathbf{x}+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

The pieces measure 22 inches, 30 inches,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
18. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece if eight inches longer than the shortest piece. How long is each piece? length (inches)
short $\quad x$
middle $\quad x+8$
$\begin{array}{ll}\text { long } & \frac{3 x+2}{120} \text { inches }(10 \text { feet })\end{array}$

$$
\mathbf{x}+(\mathbf{x}+8)+(\mathbf{3 x}+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

quarters

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
quarters
nickels

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins
quarters
nickels

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins
quarters $\quad \mathbf{x}$
nickels

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins
quarters $\quad x$
nickels 60

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins
quarters $\quad x$
nickels 60-

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?
\# of coins
quarters $\quad \mathbf{x}$
nickels $60-\mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?
\# of coins value \boldsymbol{c}
quarters $\quad x$
nickels $60-\mathbf{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢
quarters	x	$25 x$
nickels	$60-x$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value \boldsymbol{q}
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value \propto
quarters	x	$25 x$
nickels	$60-x$	$5(60-$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0 - x})$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value \propto
quarters	x	$25 x$
nickels	$60-x$	$5(60-x)$
	total	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$
quarters	\mathbf{x}	$25 x$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0} ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0 ¢}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$25 x$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0} ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0} ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$
quarters	x	$25 x$
nickels	$\mathbf{6 0 - x}$	$5(60-x)$
	total	$\mathbf{8 0 0} ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$25 x$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0} ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value \propto
quarters	x	$25 x$
nickels	$\mathbf{6 0 - x}$	$5(60-x)$
	total	$\mathbf{8 0 0} ¢$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 x+5(60-x)=$
quarters	x	25x	
nickels	$60-x$	$5(60-x)$	
	total	$800 ¢$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	$\#$ of coins	value c	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x$
nickels	$60-x$	$5(60-x)$	
	total	$800 ¢$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x+$
nickels	$60-x$	$5(60-x)$	
	total	$\mathbf{8 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x+300$
nickels	$60-x$	$5(60-x)$	
	total	$\mathbf{8 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value c	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x+300-$
nickels	$60-x$	$5(60-x)$	
	total	$800 ¢$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x+300-5 x$
nickels	$\mathbf{6 0 - x}$	$5(60-x)$	
	total	$\mathbf{8 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x+300-5 x=$
nickels	$\mathbf{6 0 - x}$	$5(60-x)$	
	total	$\mathbf{8 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value c	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x+300-5 x=800$
nickels	$60-x$	$5(60-x)$	
	total	$\mathbf{8 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	60-x	$5(60-x)$	20x
	total	800 ¢	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	60-x	$5(60-x)$	20x +
	total	800 ¢	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$25 x+5(60-x)=\mathbf{8 0 0}$
quarters	x	$25 x$	$25 x+300-5 x=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x)}$	$\mathbf{2 0 x}+\mathbf{3 0 0}$
	total	$\mathbf{8 0 0}$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	$60-x$	$5(60-x)$	$20 x+300=$
	total	$800 ¢$	

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$\mathbf{2 5 x}+5(60-x)=\mathbf{8 0 0}$	
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0 - 5 x}=\mathbf{8 0 0}$	
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x)}$		$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	20x

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	20x $=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x)}=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0 - 5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0}$	
			$\mathbf{2 0 x}=\mathbf{5 0 0}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value c	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x)}=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0}$	
			$\mathbf{2 0 x}=\mathbf{5 0 0}$
			\mathbf{x}

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value c	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x)}=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x)}$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0}$	
			$\mathbf{2 0 x}=\mathbf{5 0 0}$
			$x=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value c	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	800 ¢	$20 \mathrm{x}=500$
			$\mathrm{x}=25$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

60

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value c	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	800 ¢	$20 \mathrm{x}=500$
			$x=25$
			$60-$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value c	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
			$x=25$
			$60-\mathrm{x}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value c	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
			$x=25$
			$60-\mathrm{x}=$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value c	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
			$x=25$
			$60-x=35$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value c	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
There are 25 quarters			$\begin{gathered} x=25 \\ 60-x=35 \end{gathered}$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $\not \subset$
quarters	x	$25 x$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0} \boldsymbol{c}$

$$
\begin{gathered}
25 x+5(60-x)=800 \\
25 x+300-5 x=800 \\
\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0} \\
\mathbf{2 0 x}=\mathbf{5 0 0} \\
\text { els. } \quad x=\mathbf{2 5}
\end{gathered}
$$

There are 25 quarters and 35 nickels.

$$
\begin{gathered}
x=25 \\
60-x=35
\end{gathered}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ¢	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	800 ¢	$20 \mathrm{x}=500$
There	25 quar	s and 35	els. $\quad x=25$

$60-x=35$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \\
& 2^{\text {nd }}: \\
& 3^{\text {rd }}: \\
& 4^{\text {th }}: \\
& 5^{\text {th }}: \\
& 6^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333 .

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: \\
& \mathbf{3}^{\text {rd }}: \\
& \mathbf{4}^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: \\
& 4^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333 .

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& \mathbf{5}^{\text {th }}: x+4 \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& \mathbf{3}^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& \mathbf{5}^{\text {th }}: x+4 \\
& \mathbf{6}^{\text {th }}: x+\mathbf{x}
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333 .

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& \mathbf{3}^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& \mathbf{5}^{\text {th }}: x+4 \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& \mathbf{1}^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& \mathbf{3}^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& \mathbf{5}^{\text {th }}: x+4 \\
& \mathbf{6}^{\text {th }}: x+5
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& \mathbf{1}^{\text {st }}: x \\
& 2^{\text {nd }}: \\
& \mathbf{3}^{\text {rd }}: \\
& \mathbf{4}^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& =\mathbf{x}+\mathbf{1} \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5+15
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& \mathbf{1}^{\text {st }}: x \\
& 2^{\text {nd }}: \\
& \mathbf{3}^{\text {rd }}: \\
& \mathbf{4}^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& =\mathbf{x}+\mathbf{1} \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5
\end{aligned} \quad 6 x+15=333
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& \mathbf{1}^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& \mathbf{3}^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& \mathbf{5}^{\text {th }}: x+4 \\
& \mathbf{6}^{\text {th }}: x+5
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5+15=333 \\
& 6 x=318 \\
&
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5
\end{aligned}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x= \\
6^{\text {th }}: x+5 &
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are 53,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are 53, 54,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are 53, 54, 55,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are $53,54,55,56$,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: x & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are $53,54,55,56,57$,

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333 .

$$
\begin{array}{lc}
1^{\text {st }}: & \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are $53,54,55,56,57$, and 58.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lc}
1^{\text {st }}: & x \\
2^{\text {nd }}: x+1 & \\
3^{\text {rd }}: x+2 & 6 x+15=333 \\
4^{\text {th }}: x+3 & 6 x=318 \\
5^{\text {th }}: x+4 & x=53 \\
6^{\text {th }}: x+5 &
\end{array}
$$

The numbers are 53, 54, 55, 56, 57, and 58.

General Algebra II CWS \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. Find six consecutive integers whose sum is 333 .

$1^{\text {st }}: \mathbf{X}$

Good luck on your worksheet \#1.
$4^{\text {th }}: x+3$
$6 x=318$
$5^{\text {th }}: x+4$
$6^{\text {th }}: x+5$
$x=53$

The numbers are $53,54,55,56,57$, and 58.

