Simplify each of the following. Show your steps neatly organized.

1.
$$(\cot x)(\sin x) =$$

2.
$$(\cos x)(\cot x + \tan x) =$$

3.
$$(\sec x)(\cot x) =$$

4.
$$\csc x - (\cos x)(\cot x) =$$

$$5. \quad \frac{1-\cot x}{\tan x-1}=$$

$$6. \quad \frac{(\sin x)(\csc x)}{\cot x} = \underline{\hspace{1cm}}$$

Precalculus Worksheet #1 Chapter 6 page 2

Prove each of the following identities. Show your steps neatly organized.

$$7. \qquad \frac{\sin x}{1 - \cos x} = \csc x + \cot x$$

8.
$$\frac{\sin x - \cot x}{\cos x} = \tan x - \csc x$$

Find all solutions of the following equations. No calculators please.

9.
$$\tan x + 1 = 0$$

$$10. \quad \cos^2 x + \cos x = 0$$

$$11. \quad \sec^2 x = \sec x + 2$$

12.
$$4\cos^2 x - 3 = 0$$

Precalculus Worksheet #1 Chapter 6 page 3

Find all solutions of the following equations in the interval $[0, 2\pi)$. No calculators please.

13.
$$2\cos^2 x = 2 + \sin x$$

14.
$$2\cos x - \sec x = 0$$

15.
$$2\sin(2x) = 1$$

Find all solutions of the following equations in the interval $[0, 2\pi)$. Express your solutions in radians rounded to 4 significant digits.

16.
$$4\cos^2 x + 4\cos x - 3 = 0$$

17.
$$3\sin^2 x - 7\sin x + 1 = 0$$