Precalculus Worksheet \#4 Chapter 5 Selected Solutions

Find the exact value of each without the use of a calculator.
8. $\sin (\arccos (0.8))=$ \qquad
There are two 'common methods' used to solve this type of problem.

14. $\tan (\arcsin (-0.6))=$

Let $A=\arcsin (-0.6)$
$\rightarrow \underline{\sin A=-0.6}$ and A is a quad. IV number.
Apply the pythagorean identity $(\cos A)^{2}+(\sin A)^{2}=1$
$(\cos A)^{2}+0.36=1$
$(\cos A)^{2}=0.64$
$\cos A=0.8$ or $\cos A=-0,6$
$\cos \mathrm{A}=0.8$
$\boldsymbol{\operatorname { t a n }} \mathrm{A}=\frac{\sin \mathrm{A}}{\cos \mathrm{A}}=\frac{\mathbf{- 0 . 6}}{\mathbf{0 . 8}}$

$$
\tan A=-0.75
$$

Solve each of the following problems.
21. A regular octagon is inscribed in a circle with a 8 inch diameter. What is the length of each side of the octagon?

$\sin 22.5^{\circ}=\frac{x}{4}$
$\mathrm{x}=4 \sin 22.5^{\circ}$
$2 \mathrm{x}=8 \sin 22.5^{\circ} \approx 3.05$
Each side of the octagon is about 3.06 inches long.
22. A passenger in an airplane flying at a height of 30,000 feet sees two towns directly to the right of the plane. The angles of depression to the towns are 40° and 65°. How far apart are the towns?

