Precalculus Worksheet \#4 Chapter 5 page 1

Evaluate each of the following without the use of a calculator. Express your answers in degrees.

1. $\arcsin (0.5)=$ \qquad
2. $\arccos (1)=$ \qquad
3. $\arcsin \left(-\frac{\sqrt{2}}{2}\right)=$ \qquad 4. $\arccos \left(\frac{\sqrt{3}}{2}\right)=$ \qquad
4. $\arctan (-1)=$ \qquad 6. $\arctan (\sqrt{3})=$ \qquad

Find the exact value of each of the following without the use of a calculator.
7. $\sin (\arcsin (0.2))=$ \qquad
9. $\cot (\arctan (0.25))=$ \qquad
11. $\cos (\arcsin (12 / 13))=$ \qquad 12. $\cos (\arctan (1))=$ \qquad
13. $\cos (\arctan (-0.5))=$ \qquad
8. $\sin (\arccos (0.8))=$ \qquad
10. $\quad \tan (\arcsin (0.6))=$ \qquad
14. $\quad \tan (\arcsin (-0.6))=$ \qquad

Find each of the following in terms of x.
15. $\sin (\arccos (x))=$ \qquad
17. $\tan (\arccos (x / 3))=$ \qquad 18. $\sin (\arccos (x / 2))=$ \qquad

Solve each of the following problems. Show your complete solution neatly organized. Round to 3 significant digits where needed.
19. A vertical post that is 20 feet tall casts a shadow on level ground. If the shadow is 10 feet long, then what is the angle of elevation to the sun?
20. A ladder that is 16 feet long is leaning against a vertical wall. If the ladder makes an angle of 70° with the level ground, then how far is the foot of the ladder from the base of the wall?
21. A regular octagon is inscribed in a circle with a 8 inch diameter. What is the length of each side of the octagon.

Precalculus Worksheet \#4 Chapter 5 page 3

Solve each of the following problems. Show your complete solution neatly organized. Round to 3 significant digits where needed.
22. A passenger in an airplane flying at a height of $\mathbf{3 0 , 0 0 0}$ feet sees two towns directly to the right of the plane. The angles of depression to the towns are 40° and 65°. How far apart are the towns? (Express your answer in miles.)
23. An airplane is $\mathbf{5 0 0}$ miles south and $\mathbf{2 5 0}$ miles east of an airport. If the pilot wants to fly directly to the airport, then what compass bearing should he take?
24. A simple harmonic motion is described by the function $d=20 \sin (10 \pi t)$. What is the frequency? (Assume that the time t is expressed in seconds.)
25. A buoy oscillates in simple harmonic motion as waves go past. At a given time it is noted that the buoy moves a total of 3 feet from its low point to its high point, and that it returns to its high point every 6 seconds. Write an equation that describes the motion of the buoy if it is at its high point when $t=0$.

