Precalculus Worksheet \#2 Chapter 4 page 1

Solve each of the following problems. Show all of your work neatly organized. (Round off to 3 significant digits, where appropriate.)

1. A certain city had a population of 100,000 in 1980 and 135,000 in 1990 .
a. Express the population as a function of time using the model $\mathbf{P}=\mathbf{C e} \mathbf{e}^{\mathrm{kt}}$. Assume $\mathbf{t}=\mathbf{0}$ corresponds to the year 1980.
b. Use your model to estimate the cities population in the year 2000 .
2. A certain radioactive substance, having a current mass of $\mathbf{2 5 . 7}$ grams, has a half-life of 2500 years.
a. Express the quantity of the substance as a function of time using the model $\mathbf{Q}=\mathrm{Me}^{\mathrm{kt}}$.
b. Use your model to approximate the mass remaining in 6500 years.

Precalculus Worksheet \#2 Chapter 4 page 2

Solve each of the following problems. Show all of your work neatly organized. (Round off to 3 significant digits, where appropriate.)
3. A computer that costs $\$ 1800$ new has a depreciated value of $\$ 900$ after $\mathbf{5}$ years.
a. Express the depreciated value of the computer as a function of time using the model $V=\mathbf{C e}^{\mathrm{kt}}$.
b. Use your model to approximate the depreciated value of the computer after 7 years.
4. A particular strain of bacteria grows in a culture from a population of $\mathbf{3 0 0}$ bacteria to 500 bacteria in 8 hours.
a. Express the number of bacteria present in the culture as a function of time using the $\operatorname{model} \mathbf{N}=\mathrm{Ce}^{\mathrm{kt}}$.
b. Use your model to estimate the number of bacteria present after 15 hours.

