Calculus Worksheet \#6 Unit 8 Selected Solutions

4. A $\mathbf{2 7}$ foot girder has to be moved down a corridor that is $\mathbf{8}$ feet wide and around a right angle turn into another corridor. What is the minimum width of the second corridor?
(Ignore the width of the girder.)

Since $\mathbf{G}_{\mathbf{1}}=\mathbf{y} \mathbf{C s c} \theta$ and $\mathbf{G}_{\mathbf{2}}=\mathbf{8 S e c} \theta$
first corridor

$$
\begin{gathered}
\mathbf{y} \mathbf{C s c} \theta+\mathbf{8 S e c} \theta=\mathbf{2 7} \\
\mathbf{y}=\mathbf{2 7 S i n} \theta-\mathbf{8 T a n} \theta \\
\mathbf{y}^{\prime}=\mathbf{2 7} \operatorname{Cos} \theta-\mathbf{8 S e c}{ }^{2} \theta
\end{gathered}
$$

$\mathbf{y}^{\prime}=\mathbf{0} \longrightarrow 27 \operatorname{Cos} \theta-8 \operatorname{Sec}^{2} \theta=0 \quad$ Note: $\quad \mathbf{y}^{\prime \prime}=-27 \operatorname{Sin} \theta-16 \operatorname{Sec}^{2} \theta \operatorname{Tan} \theta$

$$
\begin{aligned}
\operatorname{Cos}^{3} \theta & =\frac{8}{27} \\
\boldsymbol{C o s} \theta & =\frac{2}{3}
\end{aligned}
$$

Clearly $y^{\prime \prime}<0$. Therefore, the stationary point corresponds to a maximum value of y.

$\boldsymbol{\operatorname { S e c }} \theta=\frac{3}{2} \quad$ and $\quad \boldsymbol{\operatorname { S i n }} \theta=\frac{\sqrt{5}}{3}$

$$
\begin{aligned}
& \mathbf{G}_{\mathbf{2}}=\mathbf{8} \operatorname{Sec} \theta=\mathbf{1 2} \text { feet } \longrightarrow \mathbf{G}_{\mathbf{1}}=\mathbf{1 5} \text { feet } \\
& \mathbf{y}=\mathbf{G}_{\mathbf{1}} \operatorname{Sin} \theta=\mathbf{5} \sqrt{\mathbf{5}} \approx \mathbf{1 1 . 2} \text { feet }
\end{aligned}
$$

The second corridor must be at least 11.2 feet wide.

