4. $\sqrt{15.8}$	7. $\sqrt[3]{64.2}$
$\mathbf{f}(\mathbf{x} + \triangle \mathbf{x}) \approx \mathbf{f}(\mathbf{x}) + \mathbf{f}'(\mathbf{x}) \mathbf{d}\mathbf{x}$	$\mathbf{f}(\mathbf{x} + \Delta \mathbf{x}) \approx \mathbf{f}(\mathbf{x}) + \mathbf{f}'(\mathbf{x}) \mathbf{d}\mathbf{x}$
$f(x) = \sqrt{x}$ $f'(x) = \frac{1}{2\sqrt{x}}$	$f(x) = \sqrt[3]{x}$ $f'(x) = \frac{1}{3} x^{\frac{2}{3}}$
$\mathbf{x} = 16 \qquad \Delta \mathbf{x} = -0.2^{2 \sqrt{X}}$	$\mathbf{x} = 64 \qquad \triangle \mathbf{x} = 0.2$
$\sqrt{15.8} \approx \sqrt{16} + (\frac{1}{2\sqrt{16}})(\frac{-1}{5})$	$\sqrt[3]{64.2} \approx \sqrt[3]{64} + \frac{1}{3}(64)^{\frac{2}{3}}(0.2)$
$\sqrt{15.8} \approx 4 + \frac{-1}{40}$	$\sqrt[3]{64.2} \approx 4 + (\frac{1}{3})(\frac{1}{16})(\frac{1}{5})$
$\sqrt{15.8} \approx \frac{159}{40}$	$\sqrt[3]{64.2} \approx 4 + \frac{1}{240}$
	$\sqrt[3]{64.2} \approx \frac{961}{240}$

10. A steel cabinet is to be in the shape of a cube, measuring 20 inches on each side, with a greatest possible error allowed of 0.1 inches. (Measurements like this can be written as 20 ± 0.1 inches.) What is the greatest possible error that can result in the volume of the cabinet?

If x represents the length of each side of the cabinet, then any error in this distance can be represented as $\triangle x$. The resulting error in the volume of the cabinet can be represented as $\triangle V$.

Clearly, for this cabinet, $V = f(x) = x^3$. $\triangle V$ can be approximated using the differential dv = f'(x) dx. $f'(r) = 3x^2$. Therefore, $\triangle V \approx 3x^2 dx = 3x^2 \triangle x$. In this problem x = 20 inches and $\triangle x = 0.1$ inches. Therefore, $\triangle V \approx 3(20)^2(0.1) = 120$.

The greatest possible error in the volume is about 120 cubic inches.