Calculus Worksheet \#3 Unit 8 Selected Solutions

4. $\sqrt{15.8}$

$$
\begin{aligned}
& f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x \\
& f(x)=\sqrt{x} \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
& x=16 \quad \Delta x=-0.2 \\
& \sqrt{15.8} \approx \sqrt{16}+\left(\frac{1}{2 \sqrt{16}}\right)\left(\frac{-1}{5}\right) \\
& \sqrt{15.8} \approx 4+\frac{-1}{40} \\
& \sqrt{15.8} \approx \frac{159}{40}
\end{aligned}
$$

7. $\sqrt[3]{64.2}$

$$
f(\mathbf{x}+\Delta \mathbf{x}) \approx f(\mathbf{x})+\mathbf{f}^{\prime}(\mathbf{x}) \mathbf{d x}
$$

$$
f(x)=\sqrt[3]{x} \quad f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}
$$

$$
x=64 \quad \Delta x=0.2
$$

$$
\sqrt[3]{64.2} \approx \sqrt[3]{64}+\frac{1}{3}(64)^{-\frac{2}{3}}(0.2)
$$

$$
\sqrt[3]{64.2} \approx 4+\left(\frac{1}{3}\right)\left(\frac{1}{16}\right)\left(\frac{1}{5}\right)
$$

$$
\sqrt[3]{64.2} \approx 4+\frac{1}{240}
$$

$$
\sqrt[3]{64.2} \approx \frac{961}{240}
$$

10. A steel cabinet is to be in the shape of a cube, measuring 20 inches on each side, with a greatest possible error allowed of 0.1 inches. (Measurements like this can be written as 20 ± 0.1 inches.) What is the greatest possible error that can result in the volume of the cabinet?

If x represents the length of each side of the cabinet, then any error in this distance can be represented as $\Delta \mathbf{x}$. The resulting error in the volume of the cabinet can be represented as ΔV.
Clearly, for this cabinet, $V=f(x)=x^{3} . \Delta V$ can be approximated using the differential $d v=f^{\prime}(x) d x$. $f^{\prime}(r)=3 x^{2}$. Therefore, $\Delta V \approx 3 x^{2} d x=3 x^{2} \Delta x$. In this problem $x=20$ inches and $\Delta x=0.1$ inches. Therefore, $\Delta V \approx \mathbf{3 (2 0})^{2}(0.1)=120$.

The greatest possible error in the volume is about $\mathbf{1 2 0}$ cubic inches.

