Calculus Worksheet \#2 Unit 8 Selected Solutions

4. $\sqrt{25.1}$
$f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x$

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}) & =\sqrt{\mathbf{x}} & \mathbf{f}^{\prime}(\mathbf{x})=\frac{1}{2 \sqrt{\mathbf{x}}} \\
\mathbf{x} & =\mathbf{2 5} & \Delta \mathbf{x}=0.1
\end{aligned}
$$

$\sqrt{25.1} \approx \sqrt{25}+\left(\frac{1}{2 \sqrt{25}}\right)\left(\frac{1}{10}\right)$
$\sqrt{25.1} \approx 5+\frac{1}{100}$
$\sqrt{25.1} \approx 5.01$
6. $\sqrt[3]{62}$

$$
f(\mathbf{x}+\Delta \mathbf{x}) \approx f(\mathbf{x})+\mathbf{f}^{\prime}(\mathbf{x}) \mathbf{d x}
$$

$$
f(x)=\sqrt[3]{x} \quad f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}
$$

$$
x=64 \quad \Delta x=-2
$$

$$
\sqrt[3]{62} \approx \sqrt[3]{64}+\frac{1}{3}(64)^{-\frac{2}{3}}(-2)
$$

$$
\sqrt[3]{62} \approx 4+\left(\frac{1}{3}\right)\left(\frac{1}{16}\right)(-2)
$$

$$
\sqrt[3]{62} \approx 4+\frac{-1}{24}
$$

$$
\sqrt[3]{62} \approx \frac{95}{24}
$$

8. Find the approximate change in $\sin \mathbf{x}$ per 1 degree change in \mathbf{x} for each of the following values of x.
a) $x=0$
b) $x=\pi / 6$
c) $\mathbf{x}=\pi / 3$
d) $\mathbf{x}=\pi / 2$

If $y=\sin x$, then the 'change in $\sin x$ ' can be represented by Δy. This can be approximated using $d y=f^{\prime}(x) d x$. Clearly, $f^{\prime}(x)=\cos x$. Therefore, $\Delta y \approx \cos x d x=(\cos x)(\Delta x)$. Since the problem asks for the change in the sin x 'per 1 degree change in $x^{\prime}, \Delta x=1^{\circ}=\pi / 180$. For each given value of x, the value of Δy can be approximated using the equation $\Delta y \approx(\cos x)(\pi / 180)$.
a) If $x=0, \Delta y \approx(\cos 0)(\pi / 180)=\pi / \mathbf{1 8 0} \approx .0175$
c) If $x=\pi / \mathbf{3}, \Delta y \approx(\cos \pi / \mathbf{3})(\pi / \mathbf{1 8 0})=(1 / 2)(\pi / \mathbf{1 8 0})=\pi / \mathbf{3 6 0} \approx .00873$

