4.
$$\sqrt{25.1}$$

f(x + Δx) \approx f(x) + f'(x) dx
f(x) = \sqrt{x} f'(x) = $\frac{1}{2\sqrt{x}}$
x = 25 Δx = 0.1
 $\sqrt{25.1} \approx \sqrt{25} + (\frac{1}{2\sqrt{25}})(\frac{1}{10})$
 $\sqrt{25.1} \approx 5 + \frac{1}{100}$
 $\sqrt{25.1} \approx 5.01$
6. $\sqrt[3]{62}$
f(x) = $\sqrt[3]{x}$ f'(x) = $\frac{1}{3}x^{\frac{2}{3}}$
x = 64 Δx = -2
 $\sqrt[3]{62} \approx \sqrt[3]{64} + \frac{1}{3}(64)^{\frac{2}{3}}(-2)$
 $\sqrt[3]{62} \approx 4 + (\frac{1}{3})(\frac{1}{16})(-2)$
 $\sqrt[3]{62} \approx 4 + \frac{-1}{24}$
 $\sqrt[3]{62} \approx \frac{95}{24}$

8. Find the approximate change in sin x per 1 degree change in x for each of the following values of x.

a) x = 0 b) $x = \pi/6$ c) $x = \pi/3$ d) $x = \pi/2$

If $y = \sin x$, then the 'change in sin x' can be represented by $\triangle y$. This can be approximated using dy = f'(x) dx. Clearly, f'(x) = cos x. Therefore, $\triangle y \approx \cos x \, dx = (\cos x)(\triangle x)$. Since the problem asks for the change in the sin x 'per 1 degree change in x', $\triangle x = 1^\circ = \pi/180$. For each given value of x, the value of $\triangle y$ can be approximated using the equation $\triangle y \approx (\cos x)(\pi/180)$.

a) If x = 0, $\triangle y \approx (\cos 0)(\pi/180) = \pi/180 \approx .0175$ c) If $x = \pi/3$, $\triangle y \approx (\cos \pi/3)(\pi/180) = (1/2)(\pi/180) = \pi/360 \approx .00873$