5. y = tan(5x) dy = f'(x) dx $dy = 5 \sec^2(5x) dx$

7. $\sqrt{50}$ $f(x + \Delta x) \approx f(x) + f'(x) dx$	10. $\sqrt[3]{7.9}$ f(x + \triangle x) \approx f(x) + f'(x) dx
$f(x) = \sqrt{x} \qquad f'(x) = \frac{1}{2\sqrt{x}}$ $x = 49 \qquad \triangle x = 1$	f(x) = $\sqrt[3]{x}$ x = 8 $\Delta x = -0.1$ f'(x) = $\frac{1}{3} x^{-\frac{2}{3}}$
$\sqrt{50} \approx \sqrt{49} + \frac{1}{2\sqrt{49}} (1)$ $\sqrt{50} \approx 7 + \frac{1}{14}$ $\sqrt{50} \approx \frac{99}{14}$	$\sqrt[3]{7.9} \approx \sqrt[3]{8} + \frac{1}{3} (8)^{\frac{-2}{3}} (-0.1)$ $\sqrt[3]{7.9} \approx 2 + (\frac{1}{3}) (\frac{1}{4}) (\frac{-1}{10})$ $\sqrt[3]{7.9} \approx 2 + \frac{-1}{120}$ $\sqrt[3]{7.9} \approx \frac{239}{120}$

11. A brass sphere with a diameter of 1 inch is given a gold plating which is .005 inches thick. What is the approximate volume of gold used? (For a sphere, $V = (4/3)\pi r^3$.)

Clearly, the volume of gold needed is the increase in the volume of the sphere caused by the gold plating. Since, $V = f(r) = (4/3)\pi r^3$, the increase in the volume, $\triangle V$, can be approximated using the differential dV = f'(r) dr. $f'(r) = 4\pi r^2$. Therefore, $\triangle V \approx 4\pi r^2 dr$. Since the diameter is 1 inch, r = 0.5 in. Since the gold plating is to be 0.005 inches thick, $dr = \triangle r = 0.005$ inches. Therefore, $\triangle V \approx 4\pi (.5)^2 (0.005) = .005\pi \approx 0.0157$.

The volume of the gold is about 0.0157 cubic inches.