Calculus Worksheet \#1 Unit 8 Selected Solutions

5. $y=\tan (5 x)$

$$
\begin{aligned}
& d y=f^{\prime}(x) d x \\
& d y=5 \sec ^{2}(5 x) d x
\end{aligned}
$$

7. $\sqrt{50}$
$f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x$
$\begin{aligned} f(x) & =\sqrt{x} & f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\ x & =49 & \Delta x=1\end{aligned}$
$\sqrt{50} \approx \sqrt{49}+\frac{1}{2 \sqrt{49}}(1)$
$\sqrt{50} \approx 7+\frac{1}{14}$
$\sqrt{50} \approx \frac{99}{14}$
8. $\sqrt[3]{7.9}$
$f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x$

$$
\begin{aligned}
f(x) & =\sqrt[3]{x} & f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}} \\
x & =8 & \Delta x=-0.1
\end{aligned}
$$

$$
\sqrt[3]{7.9} \approx \sqrt[3]{8}+\frac{1}{3}(8)^{\frac{-2}{3}}(-0.1)
$$

$$
\sqrt[3]{7.9} \approx 2+\left(\frac{1}{3}\right)\left(\frac{1}{4}\right)\left(\frac{-1}{10}\right)
$$

$$
\sqrt[3]{7.9} \approx 2+\frac{-1}{120}
$$

$$
\sqrt[3]{7.9} \approx \frac{239}{120}
$$

11. A brass sphere with a diameter of $\mathbf{1}$ inch is given a gold plating which is $\mathbf{.} \mathbf{0 0 5}$ inches thick. What is the approximate volume of gold used?
(For a sphere, $V=(4 / 3) \pi \mathbf{r}^{3}$.)
Clearly, the volume of gold needed is the increase in the volume of the sphere caused by the gold plating. Since, $V=f(r)=(4 / 3) \pi r^{3}$, the increase in the volume, ΔV, can be approximated using the differential $d V=f^{\prime}(r) d r$. $f^{\prime}(r)=4 \pi r^{2}$. Therefore, $\Delta V \approx 4 \pi r^{2} d r$. Since the diameter is $1 \mathrm{inch}, \mathrm{r}=0.5 \mathrm{in}$. Since the gold plating is to be 0.005 inches thick, $\mathrm{dr}=\Delta \mathrm{r}=0.005$ inches. Therefore, $\Delta \mathrm{V} \approx 4 \pi(.5)^{2}(0.005)=.005 \pi \approx 0.0157$.

The volume of the gold is about 0.0157 cubic inches.

