Calculus Review Unit 8 page 1

For each of the following functions, express dy in terms of x and $d x$.

1. $y=(3 x+5)^{6}$
2. $y=\sqrt[3]{3 x-1}$
dy $=$ \qquad
3. $y=\sin \left(2 x^{2}+1\right)$
dy $=$ \qquad

$$
\mathbf{d y}=
$$

\qquad
Use differentials to find a rational approximation for each of the following irrational numbers. Show your work neatly organized in the space provided.
5. $\sqrt{25.1} \approx$
6. $\sqrt[3]{7.5} \approx$

Use differentials to approximate the answer to the following question. Show your complete solution neatly organized in the space provided.
7. A iron ball with a radius of $\mathbf{2}$ inches is given a nickel plating that is 0.1 inches thick. What is the volume of nickel used? For a sphere, $V=(4 / 3) \pi r^{3}$.

Calculus Review Unit 8 page 2

Use differentials to approximate the answer to the following question. Show your complete solution neatly organized in the space provided.
8. A steel cube measuring 10 inches on each edge is given a copper plating that is $\mathbf{1 / 1 6}$ inches thick. What is the volume of copper used?

Use calculus to solve the following problem. Show your complete solution neatly organized. Express any irrational answer rounded to 3 significant digits.
9. Find the least and the greatest straight line distance between the ellipse $\mathbf{2 5} \mathbf{x}^{\mathbf{2}}+\mathbf{9} \mathrm{y}^{\mathbf{2}}=\mathbf{2 2 5}$ and the point $(4,0)$.

Calculus Review Unit 8 page 3

Use calculus to solve the following problem. Show your complete solution neatly organized. Express any irrational answer rounded to 3 significant digits.
10. A messenger is to go ashore from a ship that is 8 miles offshore and deliver a message to a camp that is 12 miles up the beach from the point nearest the ship. He can go $8 \mathbf{~ m p h}$ by boat and will be met by a jeep that can go 16 mph over the beach. If he left the ship at precisely $10: 00 \mathrm{AM}$, then what is the earliest time that he can arrive at the camp?
11. Each of the two equal sides of an isosceles triangle is k inches long. Use calculus to show that the maximum area of the triangle is $0.5 \mathrm{k}^{2}$ square inches.

