Calculus Worksheet \#4 Unit 7 Selected Solutions

7. A cone has a circular base with a radius of 5 inches and a height of 3 inches. If the height is increasing at .5 inches per second, while the radius of the base remains constant, then how fast is the volume increasing after 4 seconds?

Given: $\mathrm{dh} / \mathrm{dt}=0.5$ inches per second

Find: dV/dt after 4 seconds
For a cone, $\quad V=\frac{1}{3} \pi r^{2} h$
Given: $\mathrm{r}=5$ inches. $\Rightarrow \mathrm{V}=\frac{25}{3} \pi \mathrm{~h}$

$$
\mathrm{dV} / \mathrm{dt}=\frac{25}{3} \pi(\mathrm{dh} / \mathrm{dt})
$$

$$
\mathrm{dV} / \mathrm{dt}=\frac{25}{3} \pi(.5)=\frac{25}{6} \pi \approx 13.1 \mathrm{cu} . \text { in. per sec. }
$$

The volume is increasing at about 13.1 cubic inches per second.
Note: The volume is increasing at a constant rate.

