Calculus Lesson Unit 7

Class Worksheet

Related Rates

Calculus Lesson Unit 7 Related Rates

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:

1. Given any distance, s, say from a moveable point A on a line to a fixed point B on the line,

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:

1. Given any distance, s , say from a moveable point A on a line to a fixed point B on the line, the derivative $\mathrm{ds} / \mathrm{dt}$ is the rate that s is changing (the velocity of point A).

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:

1. Given any distance, s , say from a moveable point A on a line to a fixed point B on the line, the derivative $\mathrm{ds} / \mathrm{dt}$ is the rate that s is changing (the velocity of point A). If s is measured in feet and t is measured in seconds,

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:

1. Given any distance, s , say from a moveable point A on a line to a fixed point B on the line, the derivative $\mathrm{ds} / \mathrm{dt}$ is the rate that s is changing (the velocity of point A). If s is measured in feet and t is measured in seconds, then ds/dt would be measured in feet per second.

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:
2. Given any volume, V, say of water in a tank,

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:
2. Given any volume, V , say of water in a tank, the derivative $\mathrm{dV} / \mathrm{dt}$ is the rate that this volume is changing.

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:
2. Given any volume, V , say of water in a tank, the derivative $\mathrm{dV} / \mathrm{dt}$ is the rate that this volume is changing (the rate that water is being added to the tank).

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:
2. Given any volume, V , say of water in a tank, the derivative $\mathrm{dV} / \mathrm{dt}$ is the rate that this volume is changing (the rate that water is being added to the tank). If V is measured in cubic feet and t was measured in minutes,

Calculus Lesson Unit 7 Related Rates

Notation: If x represents any variable quantity, then the derivative $\mathrm{dx} / \mathrm{dt}$ represents the rate that x is changing.

Examples:
2. Given any volume, V , say of water in a tank, the derivative $\mathrm{dV} / \mathrm{dt}$ is the rate that this volume is changing (the rate that water is being added to the tank). If V is measured in cubic feet and t was measured in minutes, then $\mathrm{dV} / \mathrm{dt}$ would be measured in cubic feet per minute.

Calculus Lesson Unit 7 Related Rates

Solving Related Rate Problems:

Calculus Lesson Unit 7 Related Rates

Solving Related Rate Problems:
Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

Solving Related Rate Problems:
Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Step 2: Write an equation relating the variables involved (and only those variables).

Calculus Lesson Unit 7 Related Rates

Solving Related Rate Problems:
Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Step 2: Write an equation relating the variables involved (and only those variables).

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.

Calculus Lesson Unit 7 Related Rates

Solving Related Rate Problems:
Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Step 2: Write an equation relating the variables involved (and only those variables).

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.
Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Calculus Lesson Unit 7 Related Rates

Solving Related Rate Problems:
Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Step 2: Write an equation relating the variables involved (and only those variables).

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.
Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

Sample Problem:

Calculus Lesson Unit 7 Related Rates

Sample Problem:
A 20 -foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given:

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=$

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2 f p s}$

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad d x / d t=2 f p s$

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find:

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: dy/dt

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: dy/dt

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathrm{fps}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 1: Analyze the problem stating clearly which rate(s) you are given and which rate(s) you are asked to find.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathrm{fps}$
Find: $d y / d t$ when $y=12 f$ f.

Step 2: Write an equation relating the variables involved (and only those variables).

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 2: Write an equation relating the variables involved (and only those variables).

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
x^{2}+y^{2}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 2: Write an equation relating the variables involved (and only those variables).

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
x^{2}+y^{2}=400
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 2: Write an equation relating the variables involved (and only those variables).

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
x^{2}+y^{2}=400
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
x^{2}+y^{2}=400
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
x^{2}+y^{2}=400
$$

2x(dx/dt)

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)
\end{gathered}
$$

Given: $\mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0
\end{gathered}
$$

Given: $\mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 3: Differentiate each side of the equation with respect to time, thus obtaining an equation relating the rates involved.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0
\end{gathered}
$$

Given: $\mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t)
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y}
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 4: Solve the equation for the desired rate in terms of the other rates and/or variables.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y}
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y}
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{aligned}
& x^{2}+y^{2}=400 \\
& 2 x(d x / d t)+2 y(d y / d t)=0 \\
& 2 y(d y / d t)=-2 x(d x / d t) \\
& d y / d t=\frac{-x(d x / d t)}{y} \\
& \text { When } y=12 \mathrm{ft} .
\end{aligned}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 \text { ft. } \quad x^{2}+144
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400 \\
x^{2}=
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400 \\
x^{2}=256
\end{gathered}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 f$ f.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$

$$
\begin{aligned}
& x^{2}+y^{2}=400 \\
& 2 x(d x / d t)+2 y(d y / d t)=0 \\
& 2 y(d y / d t)=-2 x(d x / d t) \\
& d y / d t=\frac{-x(d x / d t)}{y} \\
& \text { When } y=12 f t . \quad x^{2}+144=400 \\
& x^{2}=256 \\
& x=16
\end{aligned}
$$

Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=2 \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{array}{r}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400 \\
\\
d y / d t=\quad x^{2}=256 \\
x
\end{array}
$$

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad d x / d t=2 \mathrm{fps}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400 \\
x^{2}=256 \\
d y / d t=
\end{gathered}
$$

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\stackrel{\mathbf{2} \mathbf{~ f p s}}{\stackrel{ }{\rightarrow}}
$$

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2 ~ f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400 \\
d y / d t=\frac{-16(2) \quad x^{2}=256}{12} \quad x=16
\end{gathered}
$$

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=
$$

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Step 5. Substitute in the current values of the rates and/or variables to find the desired result.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Answer:

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Answer: The ladder is coming down the wall

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2} \mathbf{f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Answer: The ladder is coming down the wall at $8 / 3 \mathrm{fps}$.

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

Given: $\quad \mathbf{d x} / \mathbf{d t}=\mathbf{2 f p s}$
Find: $d y / d t$ when $y=12 \mathrm{ft}$.

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t) \\
d y / d t=\frac{-x(d x / d t)}{y} \\
\text { When } y=12 f t . \quad x^{2}+144=400
\end{gathered}
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Answer: The ladder is coming down the wall at $8 / 3 \mathrm{fps}$ (2 ft .8 in . per second).

Calculus Lesson Unit 7 Related Rates

A 20-foot ladder stands upright against a vertical wall. If the lower end of the ladder is pulled away from the wall (on level ground) at the rate of 2 feet per second (fps), then how fast is the top of the ladder coming down the wall at the instant it is 12 feet above the ground?

$$
\begin{gathered}
x^{2}+y^{2}=400 \\
2 x(d x / d t)+2 y(d y / d t)=0 \\
2 y(d y / d t)=-2 x(d x / d t)
\end{gathered}
$$

Good luck on your homework !!

$$
\text { When } \mathrm{y}=12 \mathrm{ft} . \quad \mathrm{x}^{2}+144=400
$$

$$
d y / d t=\frac{-16(2)}{12} \quad \begin{gathered}
x^{2}=256 \\
x=16
\end{gathered}
$$

$$
d y / d t=-8 / 3
$$

Answer: The ladder is coming down the wall at $8 / 3 \mathrm{fps}$ (2 ft .8 in . per second).

