The Product Rule :

If y = uv where u = f(x) and v = g(x), then dy/dx = (u)(dv/dx) + (v)(du/dx)

2.
$$y = (5x - 6)^{6}(3x + 7)^{2}$$

 $u = f(x) = (5x - 6)^{6}$ and $v = g(x) = (3x + 7)^{2}$
 $du/dx = 6(5x - 6)^{5}(5)$ $dv/dx = 2(3x + 7)^{1}(3)$
 $du/dx = 30(5x - 6)^{5}$ $dv/dx = 6(3x + 7)$
 $dy/dx = (u)$ $(dv/dx) + (v)$ (du/dx)
 $dy/dx = (5x - 6)^{6}[6(3x + 7)] + (3x + 7)^{2}[30(5x - 6)]$

Now factor and simplify.

$$dy/dx = 6(5x - 6)^{5}(3x + 7)[(5x - 6) + 5(3x + 7)]$$

$$dy/dx = 6(5x - 6)^{5}(3x + 7)[5x - 6 + 15x + 35]$$

$$dy/dx = 6(5x - 6)^{5}(3x + 7)(20x + 29)$$

The Quotient Rule:

If
$$y = \frac{u}{v}$$
, where $u = f(x)$ and $v = g(x)$, then
6. $y = \frac{2x+3}{3x-1}$
 $u = f(x) = 2x + 3$ and $v = g(x) = 3x - 1$
 $du/dx = 2$ $dv/dx = 3$
 $dy/dx = \frac{(v)(du/dx) - (u)(dv/dx)}{v^2}$
 $dy/dx = \frac{(3x-1)(2) - (2x+3)(3)}{(3x-1)^2}$
 $dy/dx = \frac{6x - 2 - 6x - 9}{(3x-1)^2}$
 $dy/dx = \frac{-11}{(3x-1)^2}$

4.
$$y = (6x + 5)(x^{2} + 9)^{5}$$

 $u = f(x) = 6x + 5 \text{ and } v = g(x) = (x^{2} + 9)^{5}$
 $du/dx = 6$
 $dv/dx = 5(x^{2} + 9)^{4}(2x)$
 $du/dx = 6$
 $dv/dx = 10x(x^{2} + 9)^{4}$
 $dv/dx = (u)$
 $dv/dx = (u)$
 $dv/dx = (u)$

dy/dx = (u) (dv/dx) + (v) (du/dx))⁵] $dy/dx = (6x + 5)[10x(x^2 + 9)^4] + (x^2 + 9)^5 [6]$

$$dy/dx = 2(x^{2} + 9)^{4}[5x(6x + 5) + 3(x^{2} + 9)]$$

$$dy/dx = 2(x^{2} + 9)^{4}[30x^{2} + 25x + 3x^{2} + 27]$$

$$dy/dx = 2(x^{2} + 9)^{4}[33x^{2} + 25x + 27]$$

$$dy/dx = \frac{(v)(du/dx) - (u)(dv/dx)}{v^2}$$
9. $y = \frac{x^2 + 1}{x^2 - 2}$
 $u = f(x) = x^2 + 1$ and $v = g(x) = x^2 - 2$
 $du/dx = 2x$ $dv/dx = 2x$
 $dy/dx = \frac{(v)(du/dx) - (u)(dv/dx)}{v^2}$
 $dy/dx = \frac{(x^2 - 2)(2x) - (x^2 + 1)(2x)}{(x^2 - 2)^2}$
 $dy/dx = \frac{2x^3 - 4x - 2x^3 - 2x}{(x^2 - 2)^2}$
 $dy/dx = \frac{-6x}{(x^2 - 2)^2}$