Use the chain rule to find dy/dx for each of the following functions.
The Chain Rule : If $y=f(u)$ and $u=g(x)$, then $d y / d x=(d y / d u)(d u / d x)$
4. $y=(1-5 x)^{3}$
$y=f(u)=u^{3}$ and $u=g(x)=1-5 x$ $d y / d u=3 u^{2} \quad d u / d x=-5$ $d y / d x=3(1-5 x)^{2}(-5)$ $d y / d x=-15(1-5 x)^{2}$
12. $y=\frac{1}{(2 x-5)^{3}}$

$$
y=(2 x-5)^{-3}
$$

$y=f(u)=u^{-3}$ and $u=g(x)=2 x-5$

$$
d y / d u=-3 u^{-4} \quad d u / d x=2
$$

$$
d y / d x=-3(2 x-5)^{-4}(2)
$$

$$
d y / d x=-6(2 x-5)^{-4}
$$

8. $y=\left(x^{2}-1\right)^{7}$
$\mathbf{y}=\mathbf{f}(\mathbf{u})=\mathbf{u}^{7}$ and $\mathbf{u}=\mathbf{g}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}-\mathbf{1}$ $d y / d u=7 u^{6} \quad d u / d x=2 x$ $d y / d x=7\left(x^{2}-1\right)^{6}(2 x)$ $d y / d x=14 x\left(x^{2}-1\right)^{6}$
9. $y=\sqrt[3]{4-5 x}$

$$
y=(4-5 x)^{(1 / 3)}
$$

$$
y=f(u)=u^{(1 / 3)} \quad \text { and } u=g(x)=4-5 x
$$

$$
d y / d u=(1 / 3) u^{(-2 / 3)} \quad d u / d x=-5
$$

$$
d y / d x=(1 / 3)(4-5 x)^{(-2 / 3)}(-5)
$$

$$
d y / d x=(-5 / 3)(4-5 x)^{(-2 / 3)}
$$

