Calculus Worksheet \#4 Unit 4 Selected Solutions

This is the key relationship between the three functions, where s represents position, v represents velocity, and a represents acceleration. If $s=f(t)$, then $v=f^{\prime}(t)$ and $a=f "(t)$.
3. The velocity at time t of a particle moving on a straight line is $v=3 t^{2}-9 t+6(f p s)$ where $t \geq 0$.
a. Express the acceleration, a, of the particle as a function of $t . \quad a=6 \mathbf{t} \mathbf{- 9}$

$$
\text { Given: } v=f^{\prime}(t)=3 t^{2}-9 t+6 \text {. }
$$

$$
a=f^{\prime \prime}(t)=6 t-9
$$

b. Find the acceleration of the particle when $t=3 \mathrm{~s}$.

$$
\text { When } \mathrm{t}=3 \mathrm{~s}, \mathrm{a}=\mathrm{f}^{\prime \prime}(3)=6(3)-9=9
$$

When $\mathbf{t}=\mathbf{3} \mathbf{s}$, the acceleration is $\mathbf{9}$ feet per second per second.
c. If s is the distance that the particle is from its starting point, then express s as a function of t.

$$
\begin{aligned}
& \text { Given: } v=f(t)=3 t^{2}-9 t+6 \\
& s=f(t)=\int\left(3 t^{2}-9 t+6\right) d t \\
& s=f(t)=t^{3}-\frac{9}{2} t^{2}+6 t+C
\end{aligned}
$$

Since s is the distance from starting position, $f(0)=0$! Therefore $\mathbf{C}=0$.

$$
s=f(t)=t^{3}-\frac{9}{2} t^{2}+6 t
$$

d. When will the particle be at rest? What is its position when it is at rest relative to its starting point?

The particle is at rest when $v=3 t^{2}-9 t+6=0$.

$$
\begin{gathered}
t^{2}-3 t+2=0 \\
(t-1)(t-2)=0 \\
t=1 \text { or } t=2
\end{gathered}
$$

When $t=1, s=f(1)=2.5$. When $t=2, s=f(2)=2$.
The particle is at rest after 1 second 2.5 feet from its starting position. It is at rest again after 2 seconds 2 feet (in the same direction) from its starting position.
e. How far does the particle move from $t=3 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$?

When $t=3 \mathrm{~s}, \mathrm{~s}=\mathrm{f}(3)=4.5$ feet. When $\mathrm{t}=5 \mathrm{~s}, \mathrm{~s}=\mathrm{f}(5)=42.5$ feet. Since $\mathrm{v}>0$ during the entire time interval, the particle is moving in the same direction for the entire interval. Therefore the distance moved is $f(5)-f(3)=42.5-4.5$.

The particle moved 38 feet during the time interval.

