Answer each of the following questions.

1. A particle moving on a line will be s feet from a fixed point P after t seconds where $s=f(t)=12 t^{2}-3 t^{3}, t \geq 0$. (Note that if $s<0$, then the particle is to the left of point P, and if $s>0$, then the particle is to the right of point P.)
a. Express the velocity, v, and the acceleration, a, as a function of t.

$$
\mathbf{v}=
$$

$$
\mathbf{a}=
$$

b. Fill out the table below giving the position relative to point P, the velocity, and the acceleration of the particle at the indicated times.

\mathbf{t}	\mathbf{s}	\mathbf{v}	\mathbf{a}
$\mathbf{0}$			
$\mathbf{1}$			
2			
3			
4			
5			

2. A particle moving on a straight line starts from rest at point P. Its acceleration, a, after t seconds is given by the equation $a=4-3 t\left(f t / s^{2}\right)$ where $t \geq 0$.
a. Express the velocity, v, of the particle as a function of $t . \quad v=$ \qquad
b. Express the distance, s, that the particle is from point P as a function of t.

$$
\mathbf{s}=
$$

c. When will the particle again be at rest? How far from point P is it then?
d. When will the particle again be at point P ? How fast will it be moving then?

Calculus Worksheet \#4 Unit 4 page 2

Answer each of the following questions.
3. The velocity at time t of a particle moving on a straight line is $v=3 t^{2}-9 t+6$ (fps) where $t \geq 0$.
a. Express the acceleration, a, of the particle as a function of t. $a=$ \qquad
b. Find the acceleration of the particle when $t=3 \mathrm{~s}$.
c. If s is the distance that the particle is from its starting point, then express s as a function of t.

$$
\mathbf{s}=
$$

d. When will the particle be at rest? What is its position when it is at rest relative to its starting point?
e. How far does the particle move from $t=3 s$ to $t=5 s$?
4. A helicopter is moving straight up at a constant rate of 10 feet per second. When it is 150 feet above the ground, a steel ball is dropped out the door. Assume the acceleration due to gravity is a constant 32 feet per second per second when you answer the following questions.
a. Let \mathbf{v} be the velocity of the ball and let s be the distance the ball is above the ground. Express both as a function of t, where t is the time in seconds since the ball was dropped. (For the sake of simplicity, neglect air resistance.)

$$
\mathbf{v}=
$$

$$
\mathbf{s}=
$$

\qquad
b. When will the ball hit the ground (3 significant digits)?
c. How fast will the ball be moving as it hits the ground (3 significant digits)?

