Calculus Worksheet \#3 Unit 4 Selected Solutions

This is the key relationship between the three functions, where s represents position, \mathbf{v} represents velocity, and a represents acceleration. If $s=f(t)$, then $v=f^{\prime}(t)$ and $a=f "(t)$.
3. The velocity at time t of a particle moving on a straight line is $v=t^{\mathbf{2}}-\mathbf{2}(\mathbf{f p s})$ where $t \geq 0$.
a. Express the acceleration, a, of the particle as a function of $t . \quad a=2 t$

$$
\begin{gathered}
\text { Given: } v=f^{\prime}(\mathbf{t})=\mathbf{t}^{2}-2 \mathbf{t} . \\
\mathbf{a}=\mathbf{f}^{\prime \prime}(\mathbf{t})=2 \mathrm{t}
\end{gathered}
$$

b. Find the acceleration of the particle when $t=\mathbf{6} \mathbf{s}$.

$$
\text { When } t=6 \mathrm{~s}, \mathrm{a}=\mathrm{f}^{\prime \prime}(6)=2(6)=12
$$

When $t=6 \mathbf{s}$, the acceleration is $\mathbf{1 2}$ feet per second per second.
c. If s is the distance that the particle is from its starting point, then express s as a function of t.

$$
\begin{gathered}
\text { Given: } v=f^{\prime}(t)=t^{2}-2 \\
s=f(t)=\int\left(t^{2}-2\right) d t \\
s=f(t)=\frac{1}{3} t^{3}-2 t+C
\end{gathered}
$$

Since s is the distance from starting position, $f(0)=0$! Therefore $\mathbf{C}=\mathbf{0}$.

$$
s=f(t)=\frac{1}{3} t^{3}-2 t
$$

d. How far does the particle move from $t=3 \mathrm{~s}$ to $t=4 \mathrm{~s}$?

When $t=3 s, s=f(3)=3$ feet. When $t=4 s, s=f(4)=40 / 3$ feet. Since $v>0$ during the entire time interval, (This is important !!) the particle is moving in the same direction for the entire interval. Therefore the distance moved is $f(4)-f(3)=40 / 3-3$.

The particle moved $10 \frac{1}{3}$ feet from $t=3 \mathrm{~s}$ to $\mathrm{t}=4 \mathrm{~s}$.

