Calculus Worksheet \#2 Unit 4 Selected Solutions

Find the general solution and the specific solution to each of the following differential equations. Show your work neatly organized.
7. $f^{\prime}(x)=x^{2}-3 x-1 ; f(3)=0$

$$
f(x)=\int\left(x^{2}-3 x-1\right) d x
$$

$$
f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-x+C
$$

$f(3)=9-13.5-3+C=0$
C-7.5 = 0

$$
C=7.5
$$

$$
f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-x+\frac{15}{2}
$$

10. $f^{\prime \prime}(x)=12 x ; f(2)=2 ; f(-1)=5$

$$
f^{\prime}(x)=\int(12 x) d x=6 x^{2}+C_{1}
$$

$$
f(x)=\int\left(6 x^{2}+C_{1}\right) d x
$$

$$
f(x)=3 x^{3}+C_{1} x+C_{2}
$$

$$
f(2)=24+2 C_{1}+C_{2}=2
$$

$$
f(-1)=-3-C_{1}+C_{2}=5
$$

$$
2 C_{1}+C_{2}=-22 \quad C_{1}=-10
$$

$$
-C_{1}+C_{2}=8 \quad C_{2}=-2
$$

$$
f(x)=3 x^{3}-10 x-2
$$

13. The slope, m, of the curve at any point (x, y) on the curve is given by the equation $m=6 x^{2}-5$. The curve has an x-intercept of -1 .

$$
\begin{gathered}
y=f(x) \\
m=f^{\prime}(x)=6 x^{2}-5 \\
f(x)=\int\left(6 x^{2}-5\right) d x \\
f(x)=2 x^{3}-5 x+C \\
\text { The } x \text {-intercept is }-1 .
\end{gathered}
$$

