Calculus Worksheet #1 Unit 4 Selected Solutions

Find the general solution and the specific solution to each of the following differential equations. Show your work **neatly organized**.

7.
$$f'(x) = 2x^2 + 8x + 2$$
; $f(-6) = 1$
 $f(x) = \int (2x^2 + 8x + 2)dx$
 $f(x) = \frac{2}{3}x^3 + 4x^2 + 2x + C$
 $f(-6) = -144 + 144 - 12 + C = 1$
 $C - 12 = 1$
 $C = 13$
 $f(x) = \frac{2}{3}x^3 + 4x^2 + 2x + 13$
 $f(x) = \frac{2}{3}x^3 + 4x^2 + 2x + 13$
 $f(x) = \frac{2}{3}x^3 + 4x^2 + 2x + 13$
 $f(x) = \frac{2}{3}x^3 + 4x^2 + 2x + 13$
 $f(x) = \frac{2}{3}x^3 - x^2 + C_1x + C_2$
 $f(x) = \frac{1}{2}x^3 - x^2 + C_1x + C_2 = 3$
 $f(-2) = -4 - 4 - 2C_1 + C_2 = 3$
 $f(-2) = -4 - 4 - 2C_1 + C_2 = -1$
 $2C_1 + C_2 = 3$
 $C_1 = -1$
 $-2C_1 + C_2 = 7$
 $C_2 = 5$
 $f(x) = \frac{1}{2}x^3 - x^2 - x + 5$

13. The slope, m, of a particular curve at any point (x, y) on the curve is given by the equation m = -2x + 1. Find the equation of the curve if it has a y-intercept of 10.

y = f(x)
m = f'(x) = -2x + 1
f(x) =
$$\int (-2x + 1)dx$$

f(x) = $-x^2 + x + C$
The y-intercept is 10.
f(0) = C = 10
y = f(x) = -x^2 + x + 10