Find the general solution and the specific solution to each of the following differential equations. Show your work neatly organized.

1.
$$f'(x) = 3x^2 + 6x - 2$$
; $f(0) = -1$

$$f'(x) = 3x^2 + 6x - 2$$
; $f(0) = -1$ 2. $f'(x) = 6x^2 - 2x + 3$; $f(1) = 2$

3.
$$f'(x) = x^2 - 2x + 5$$
; $f(3) = 1$

4.
$$f'(x) = 3x^2 - 5x - 5$$
; $f(4) = 4$

5.
$$f'(x) = (x-1)^2$$
; $f(3) = 2$

6.
$$f'(x) = x^2 + x^{-2}$$
; $f(2) = 3$

7.
$$f'(x) = 2x^2 + 8x + 2$$
; $f(-6) = 1$

Calculus Worksheet #1 Unit 4 page 2

Find the general solution and the specific solution to each of the following differential equations. Show your work neatly organized.

8.
$$f''(x) = 6x + 2$$
; $f(0) = 4$; $f(1) = 7$

8.
$$f''(x) = 6x + 2$$
; $f(0) = 4$; $f(1) = 7$
9. $f''(x) = 12x - 6$; $f(1) = -3$; $f(2) = -3$

10.
$$f''(x) = 18x + 4$$
; $f(-1) = 3$; $f(1) = -1$ 11. $f''(x) = 3x - 2$; $f(2) = 3$; $f(-2) = -1$

Write a differential equation and use it to answer the following questions. Show your work neatly organized.

12. The slope, m, of a particular curve at any point (x,y) on the curve is given by the equation $m = x^2 - 4$. Find the equation of the curve if it passes through the point (3,-1).

Calculus Worksheet #1 Unit 4 page 3

Write a differential equation and use it to answer the following questions. Show your work neatly organized.

13. The slope, m, of a particular curve at any point (x,y) on the curve is given by the equation m = -2x + 1. Find the equation of the curve if it has a y-intercept of 10.

14. The slope, m, of a particular curve at any point (x,y) on the curve is given by the equation m = x + 2. Find the equation of the curve if it is tangent to the x-axis.

15. A function is such that its second derivative is F''(x) = 6x. Find its equation if it is tangent to y = 2x + 3 at the point (-1,1).