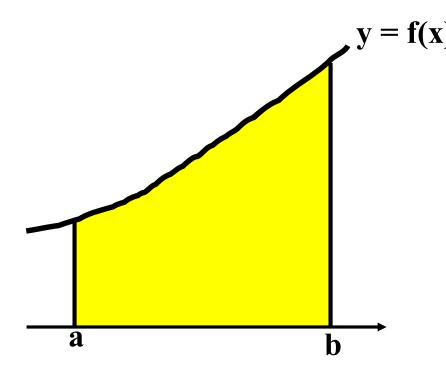
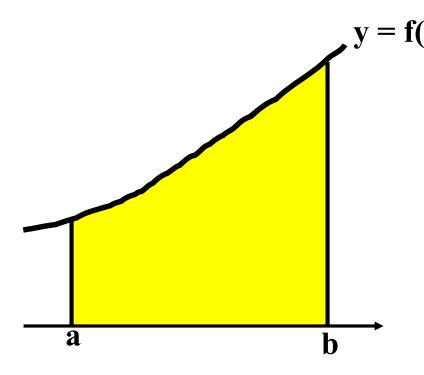
Calculus Lesson #2 Unit 3

The Fundamental Theorems

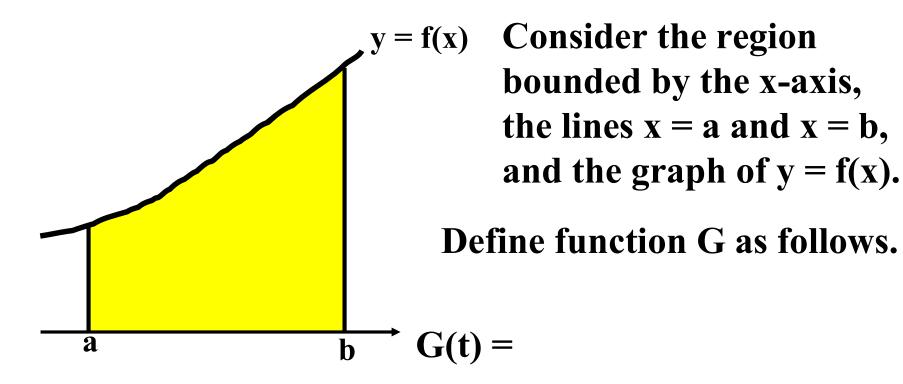


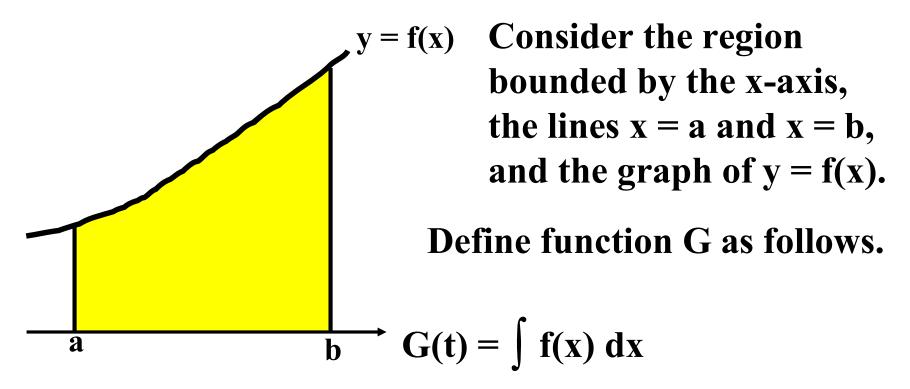
y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

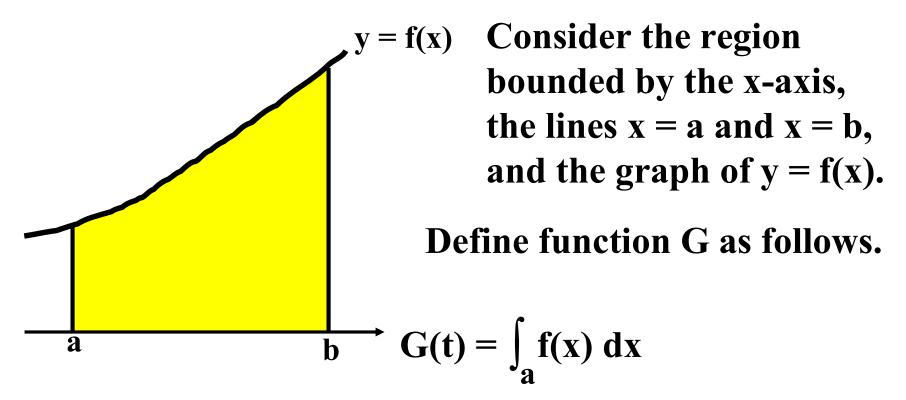


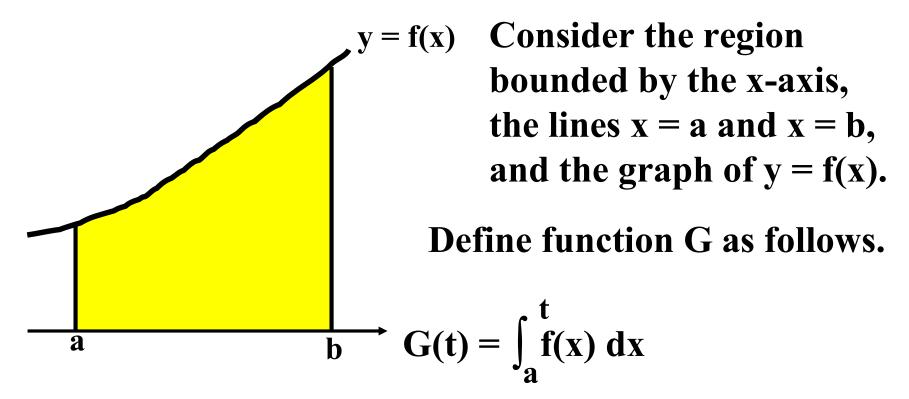
y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

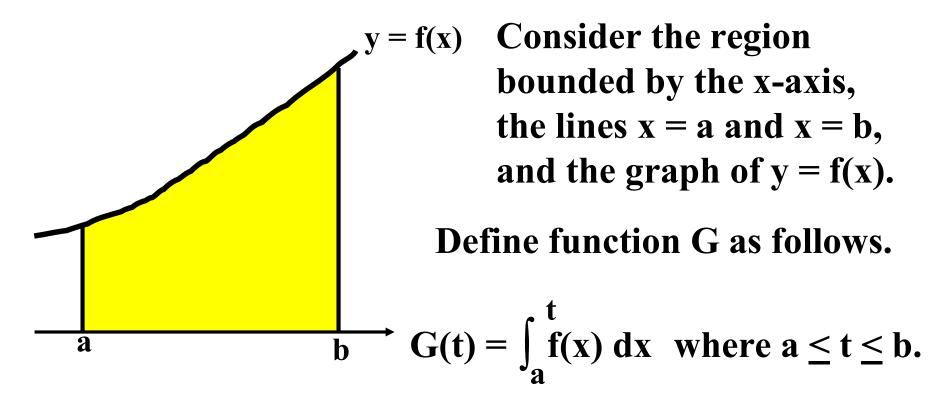
Define function G as follows.

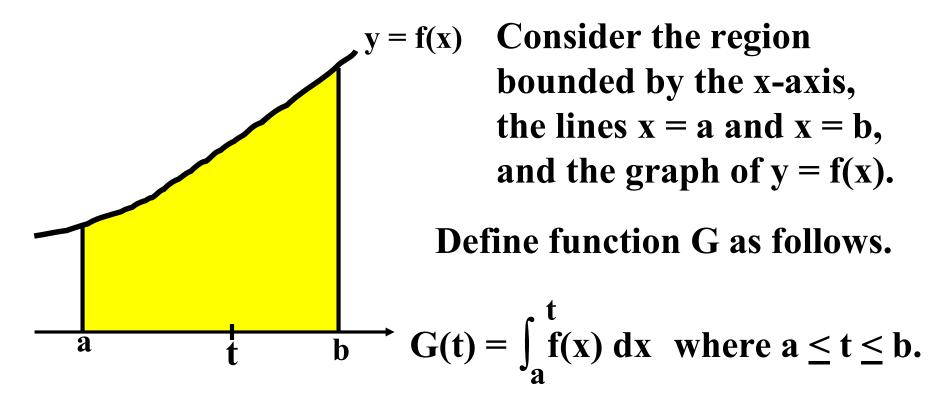


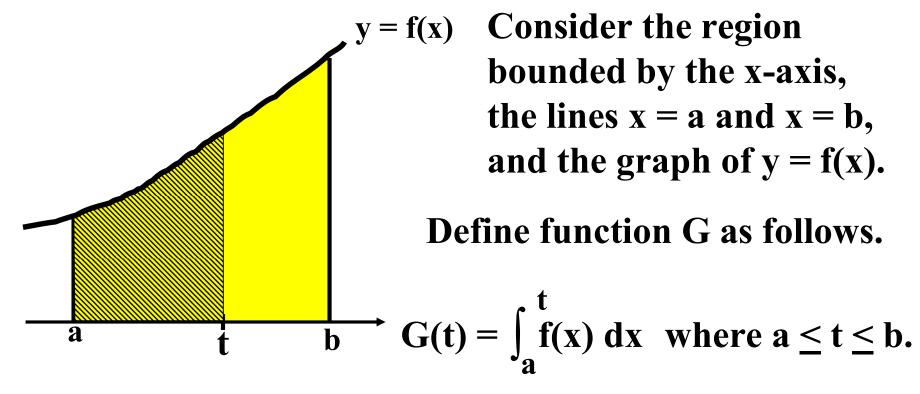




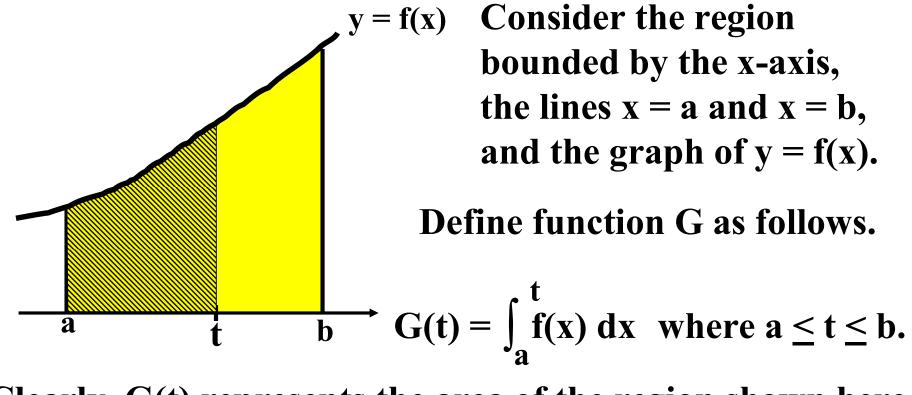






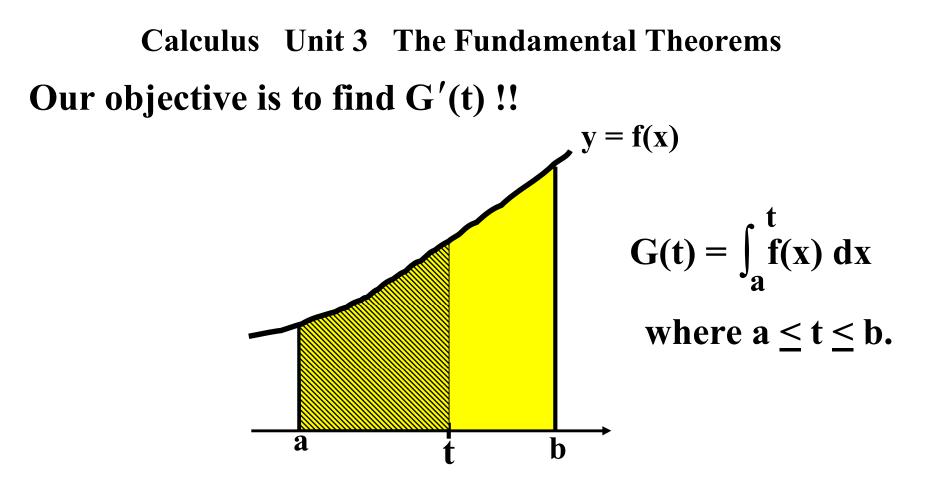


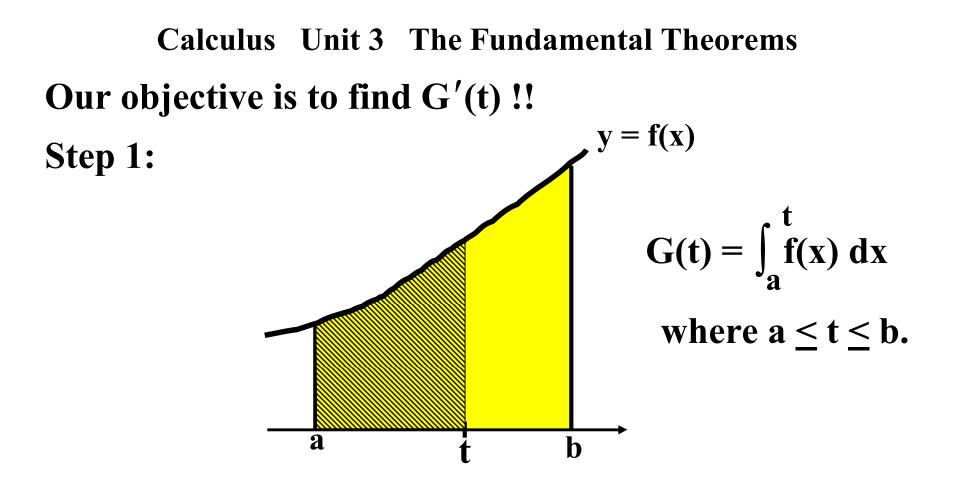
Clearly, G(t) represents the area of the region shown here.

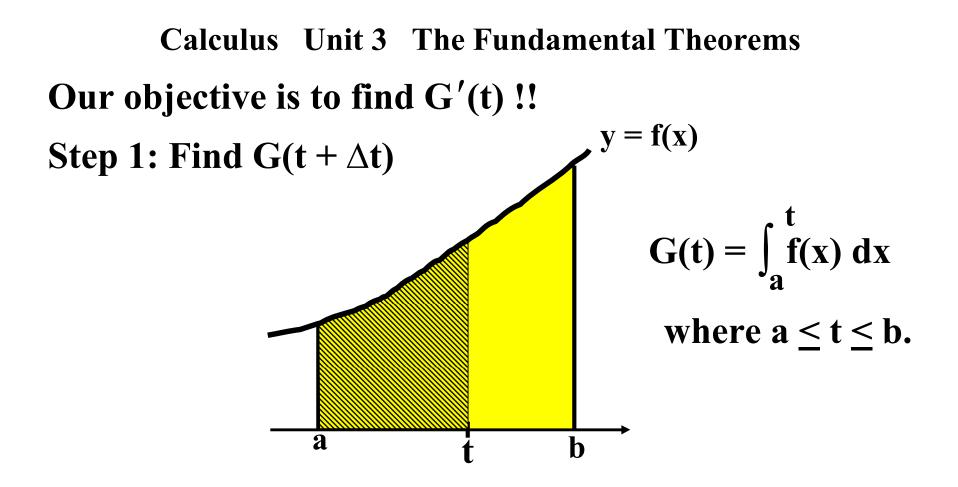


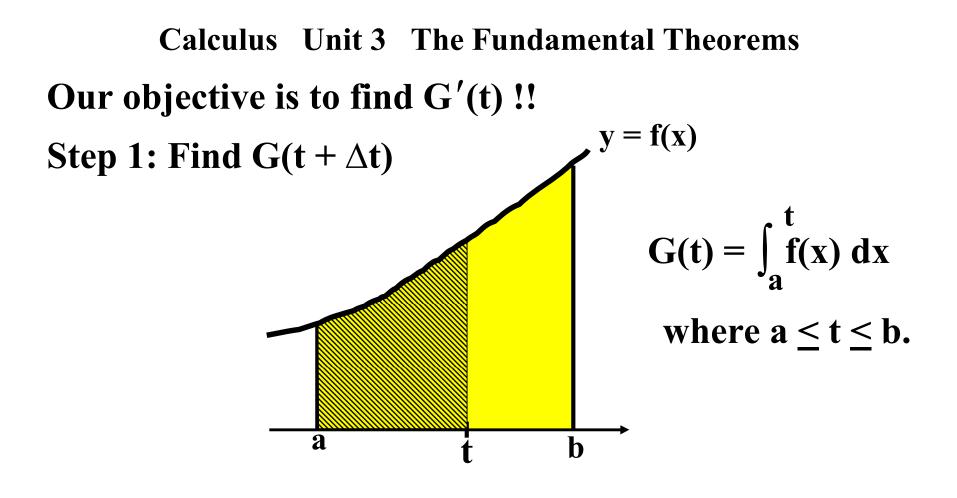
Clearly, G(t) represents the area of the region shown here.

Our objective is to find G'(t) !!

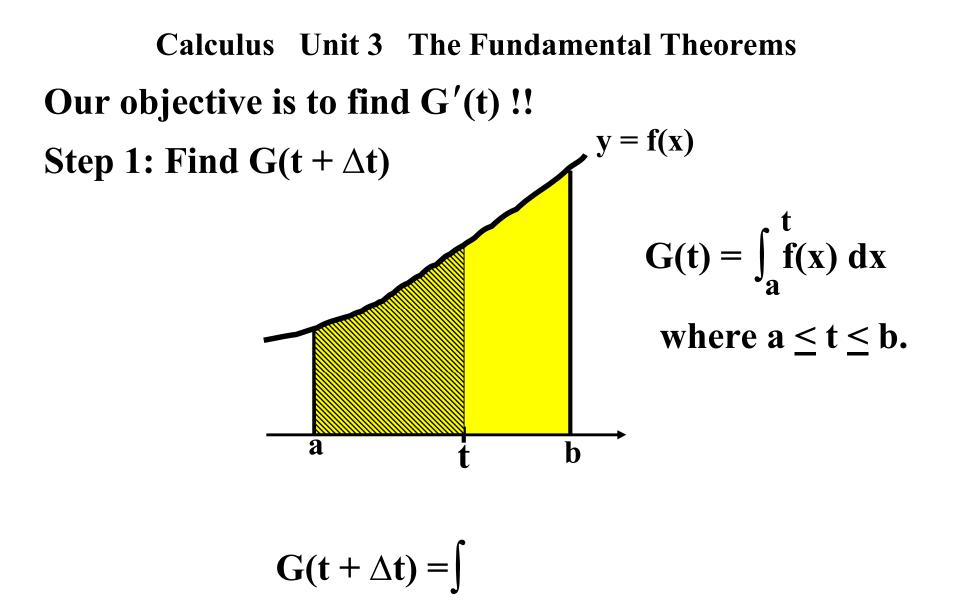


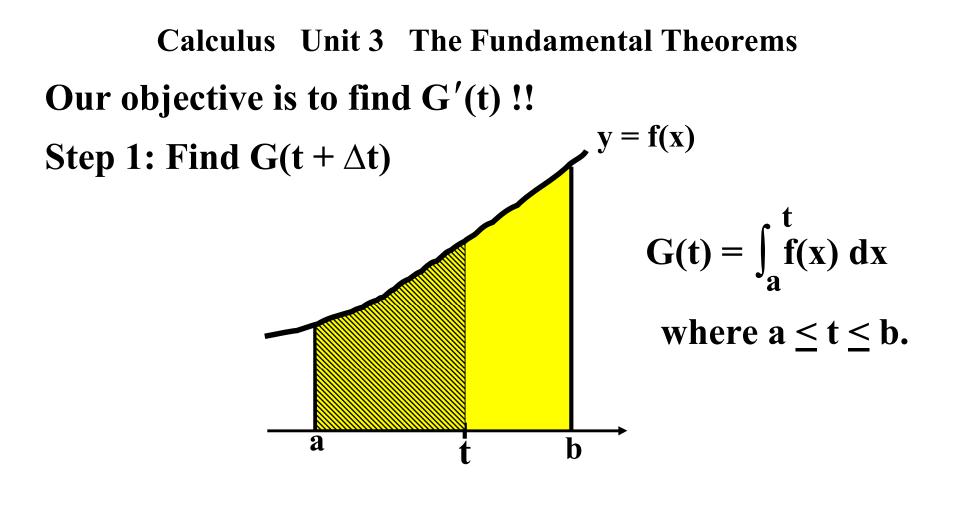




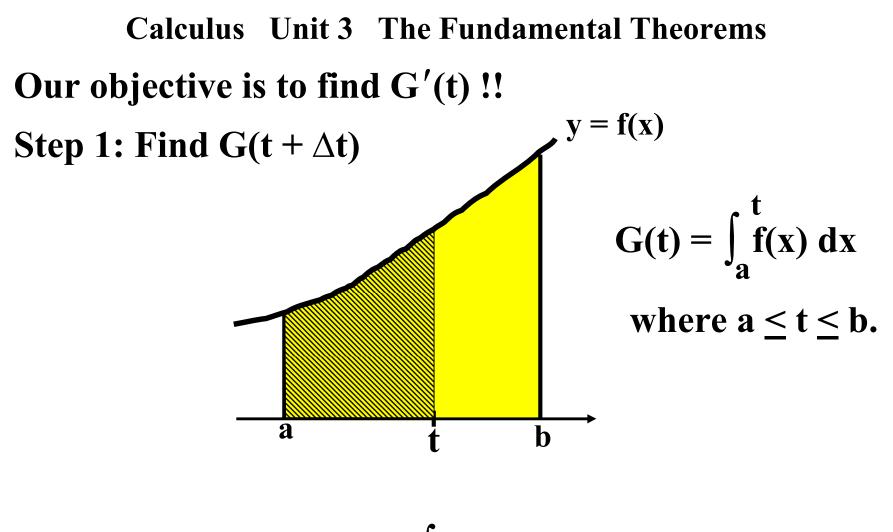


 $G(t + \Delta t) =$

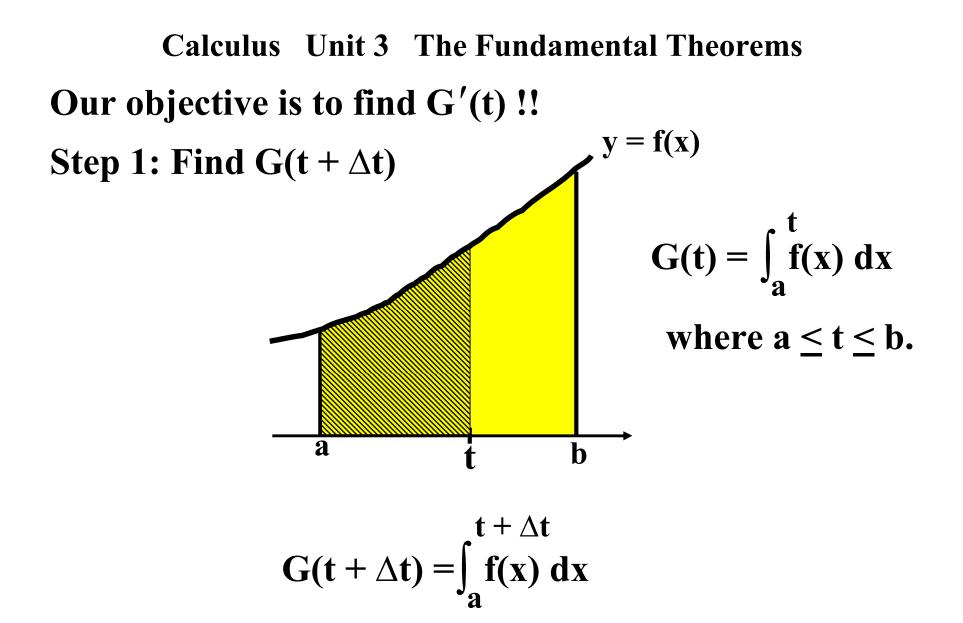


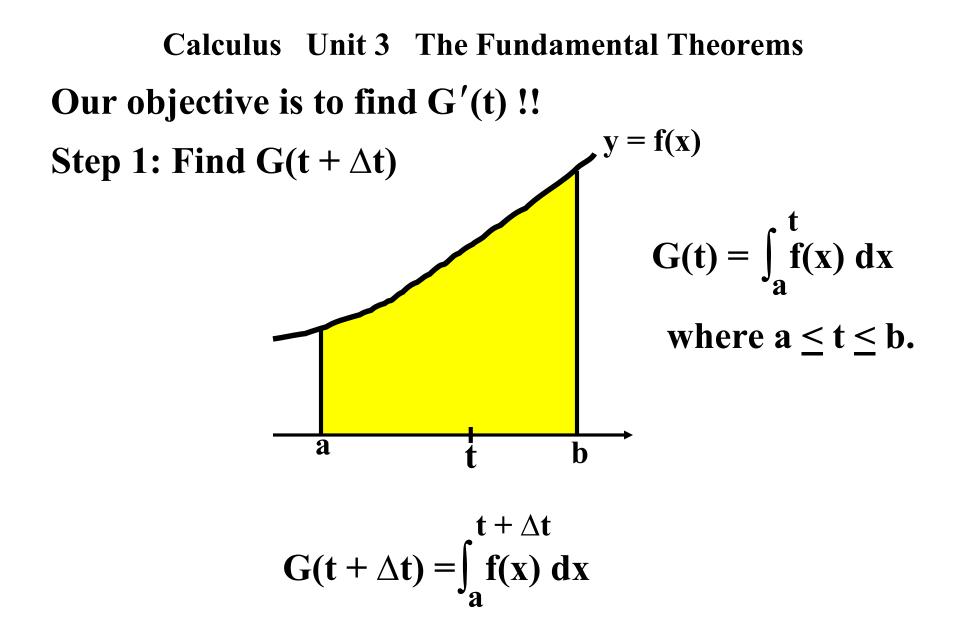


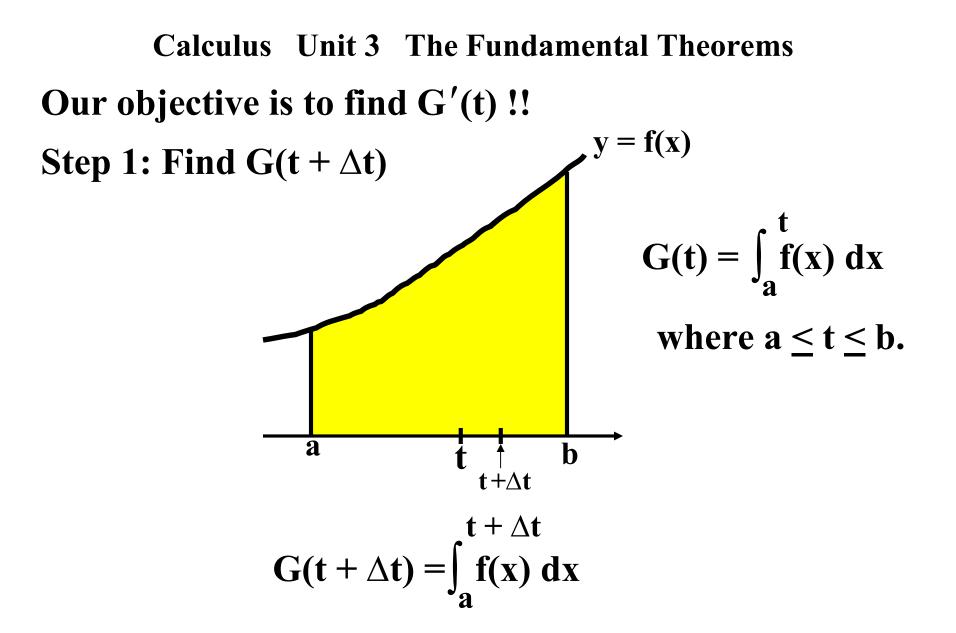
 $\mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) = \int \mathbf{f}(\mathbf{x}) \, \mathbf{d}\mathbf{x}$

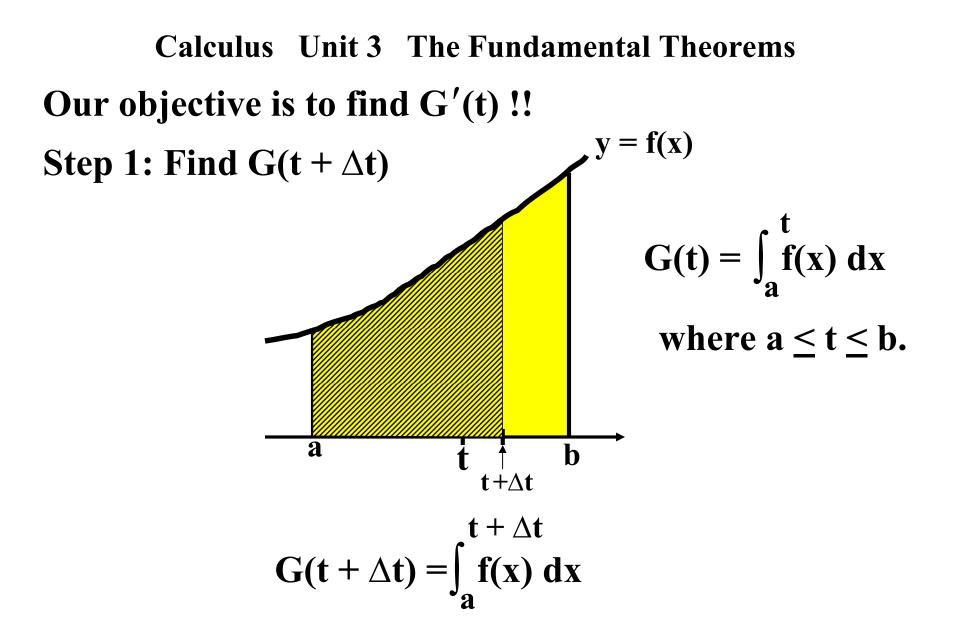


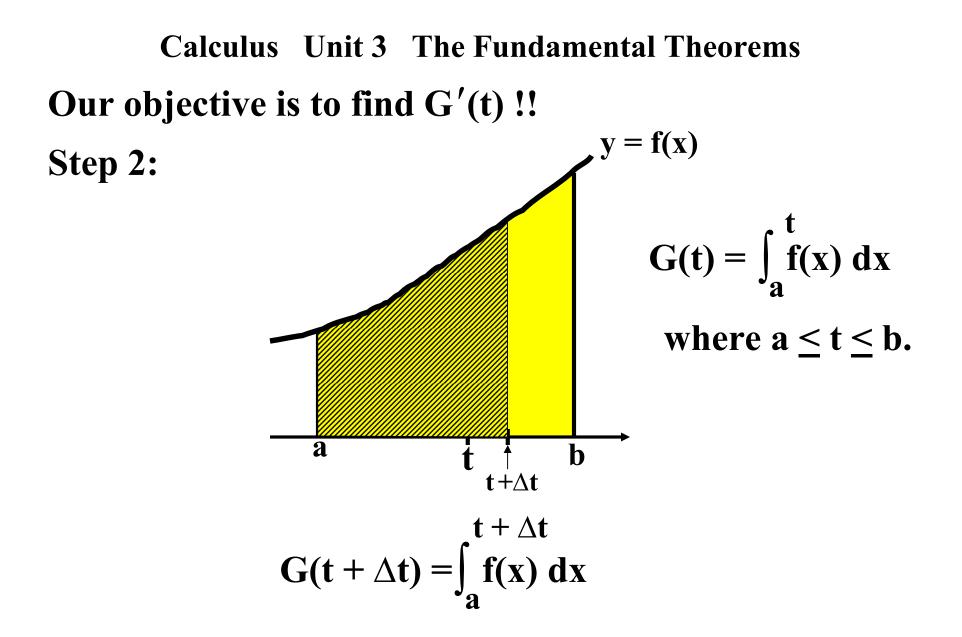
$$\mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) = \int_{\mathbf{a}} \mathbf{f}(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

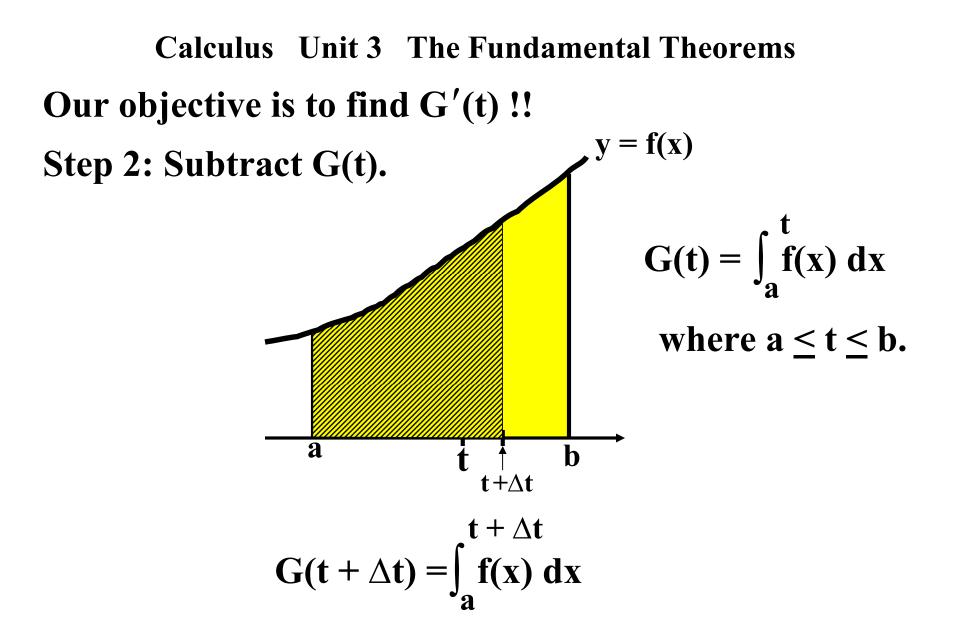


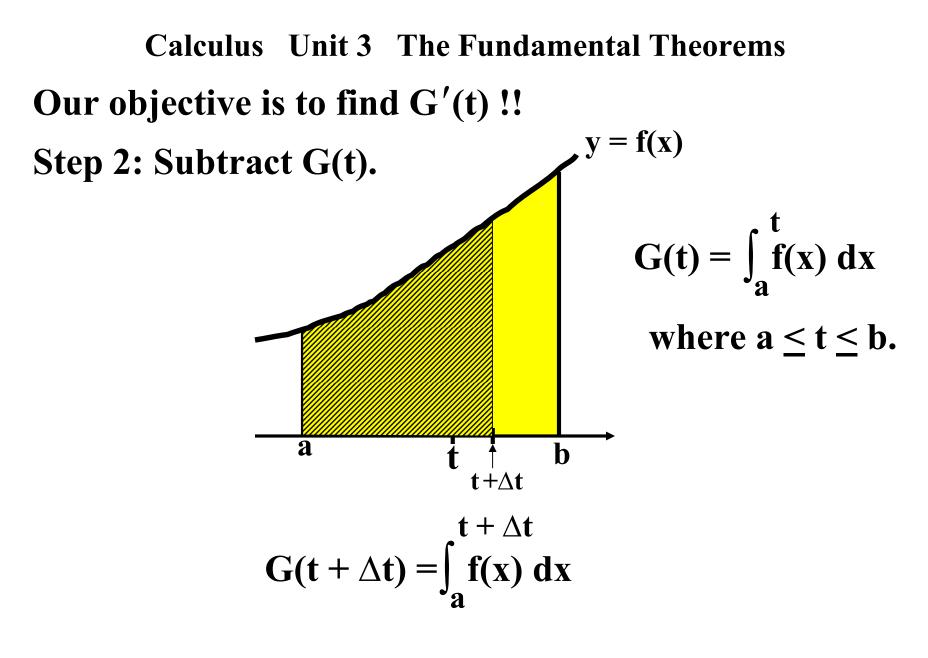




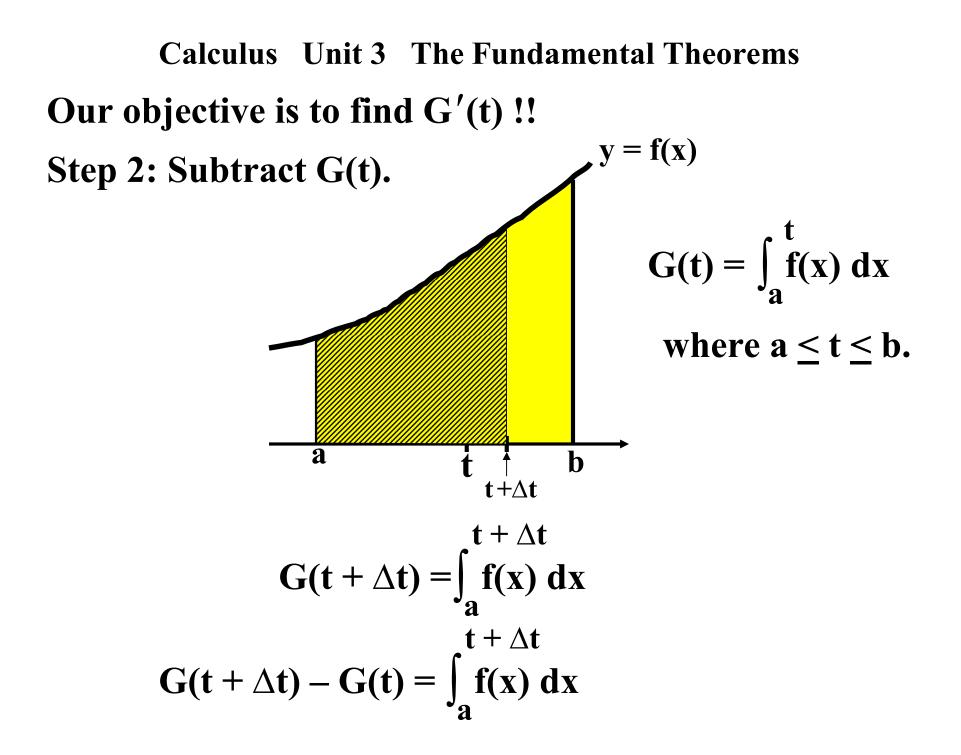


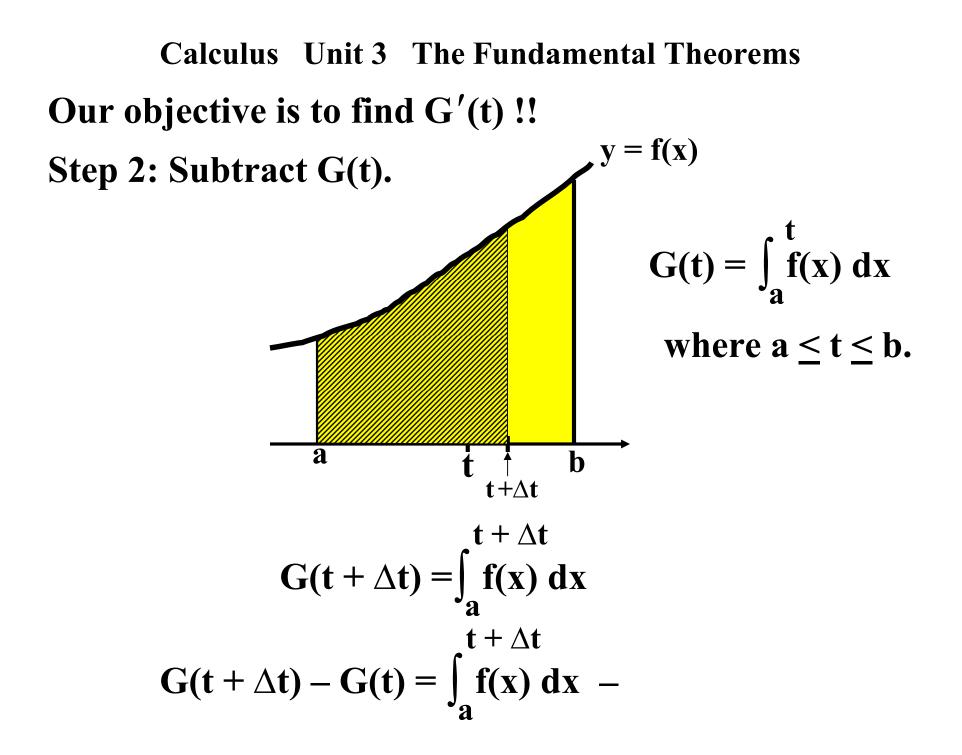


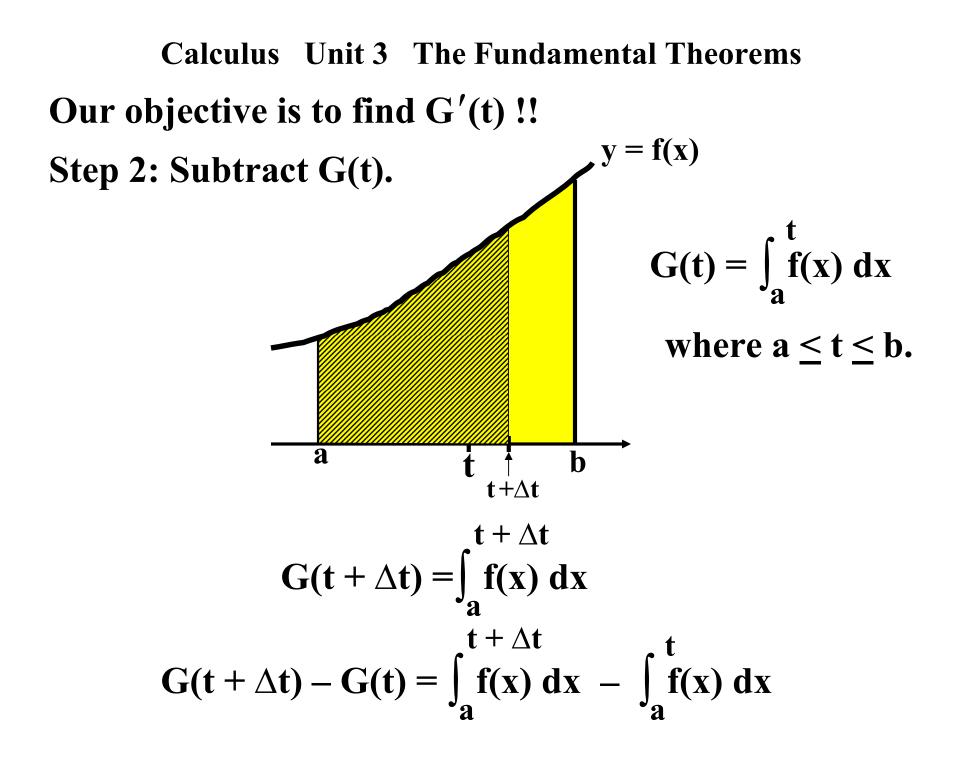


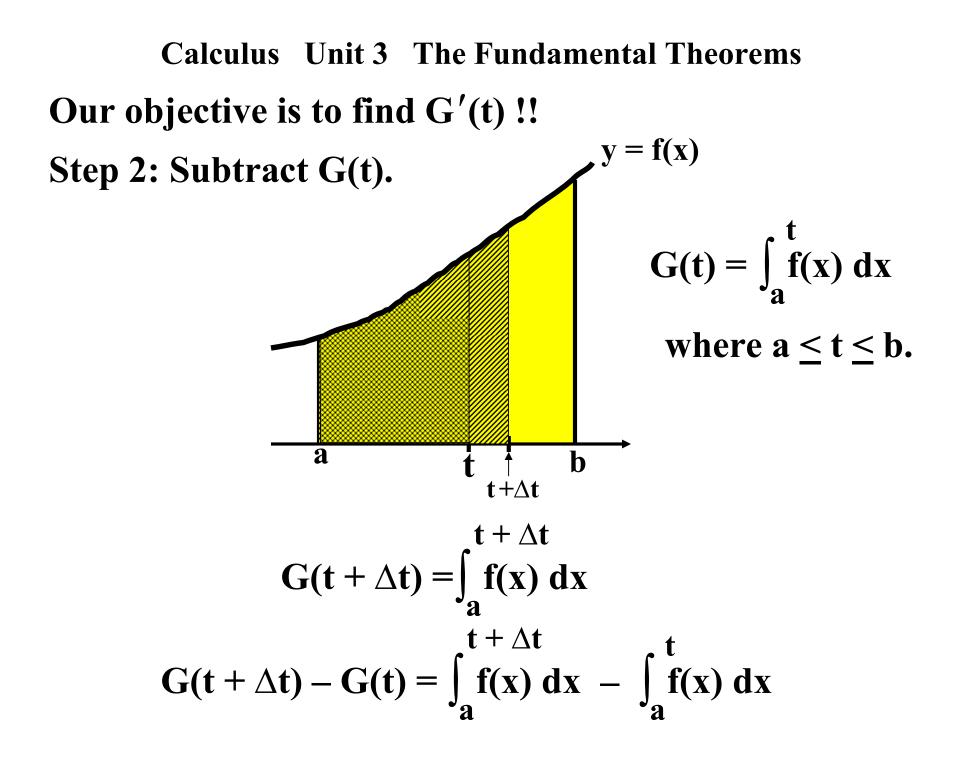


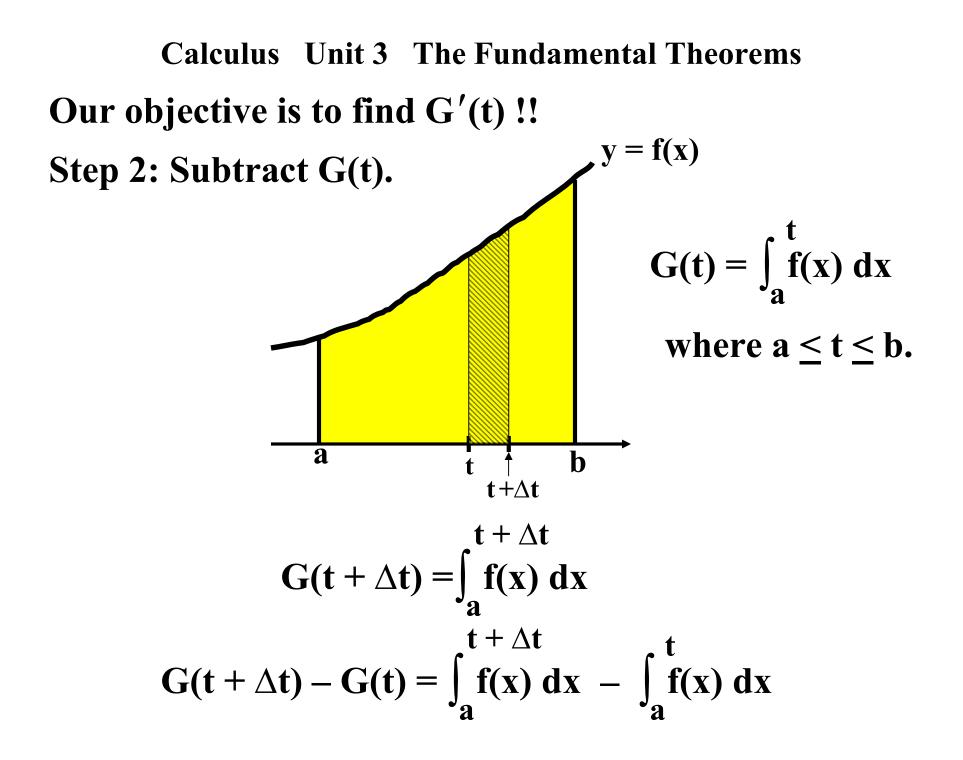
 $\mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) - \mathbf{G}(\mathbf{t}) =$

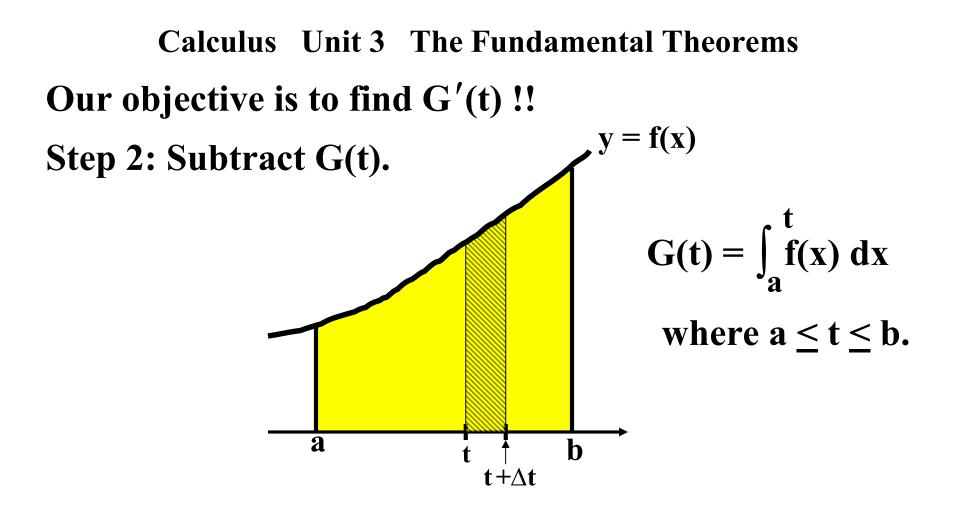


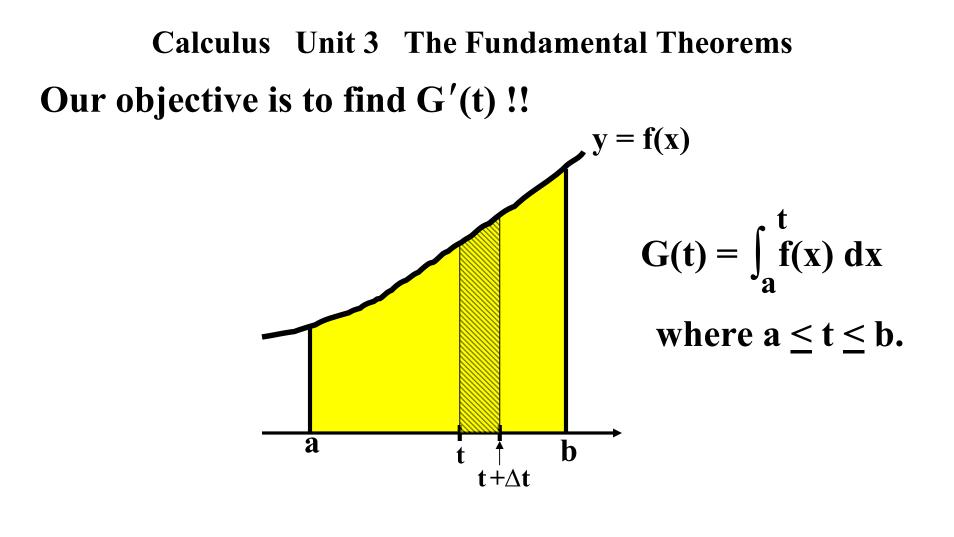


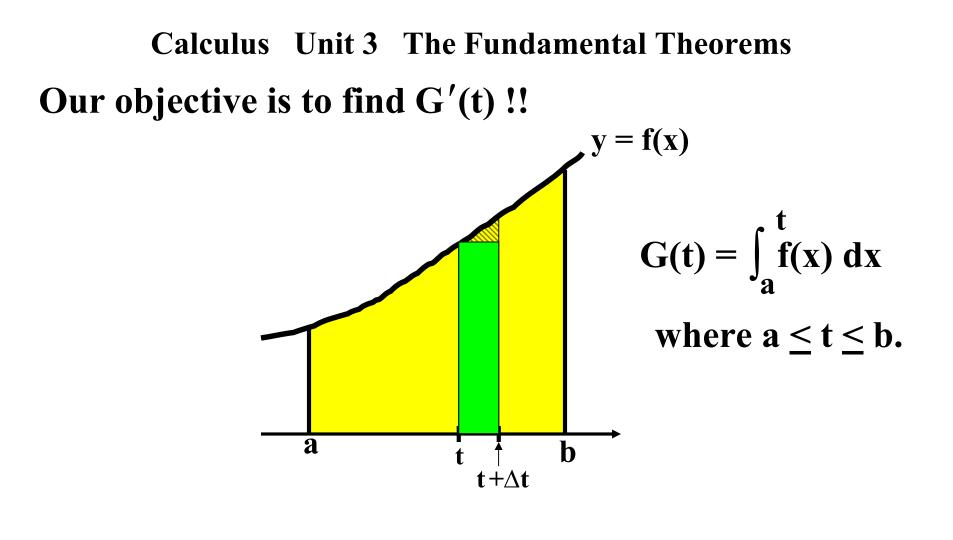


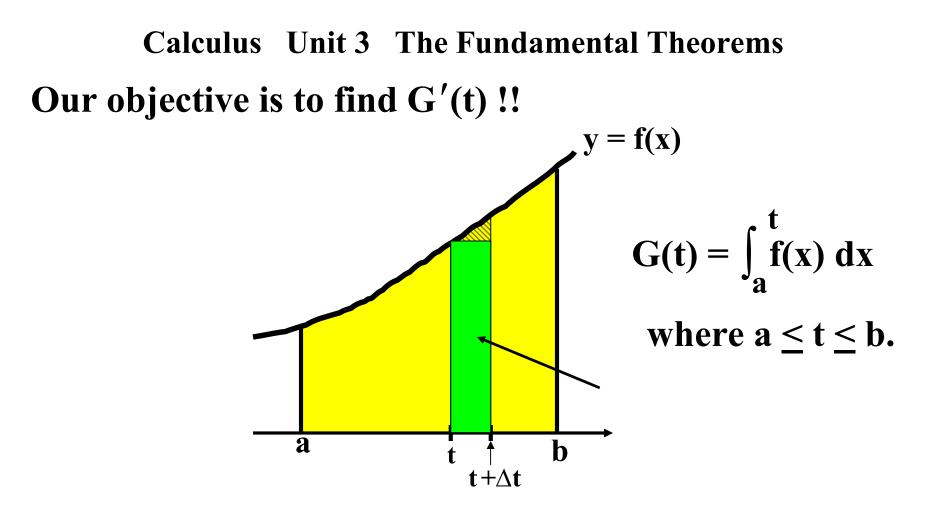




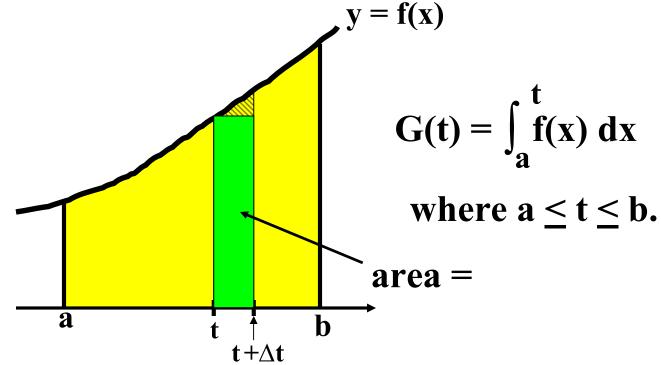




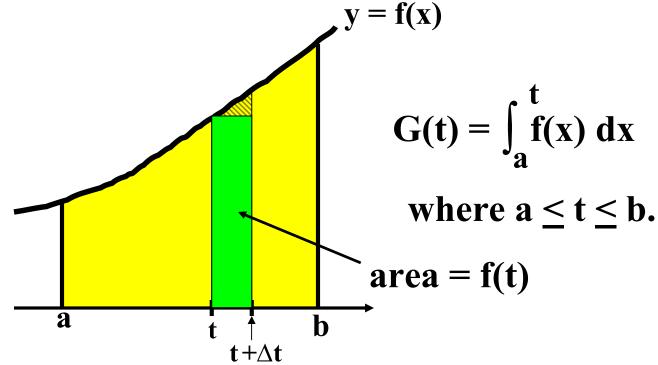


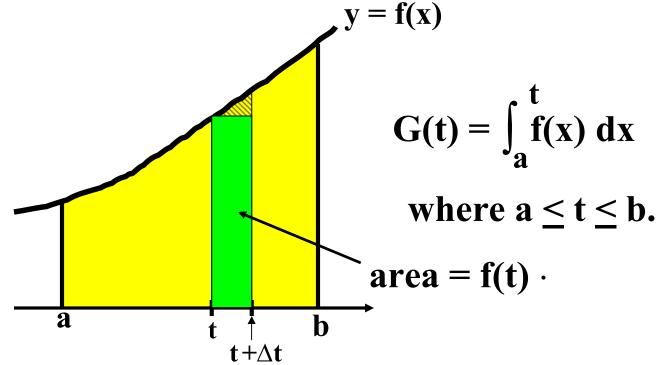


Calculus Unit 3 The Fundamental Theorems Our objective is to find G'(t) !!

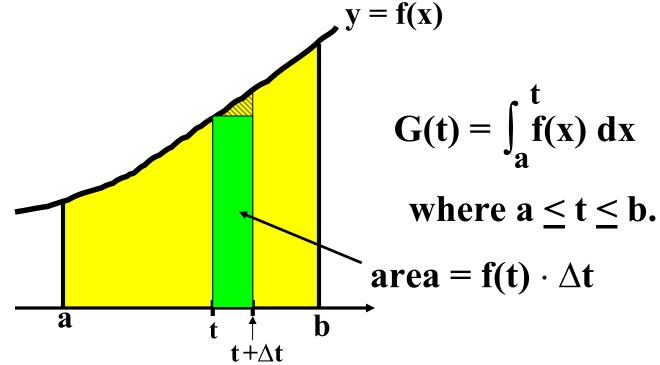


Calculus Unit 3 The Fundamental Theorems Our objective is to find G'(t) !!

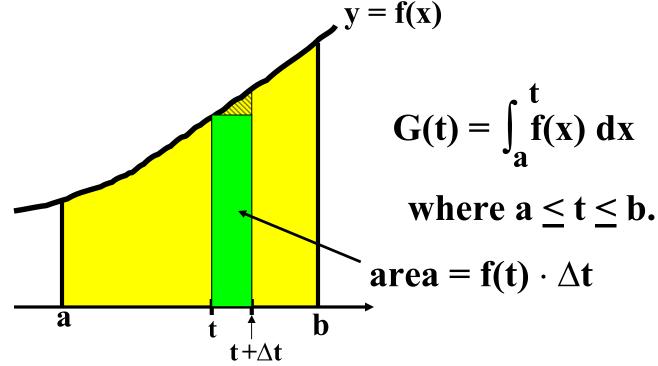


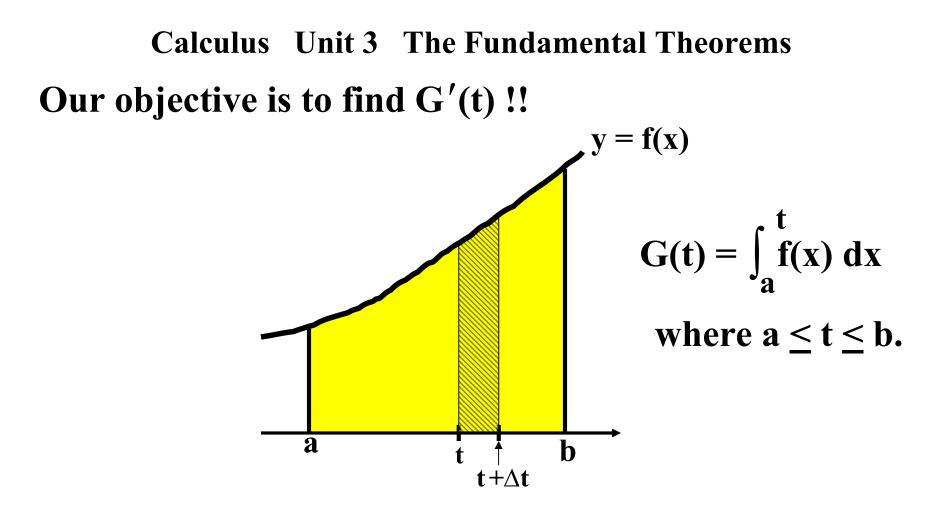


 $G(t + \Delta t) - G(t)$

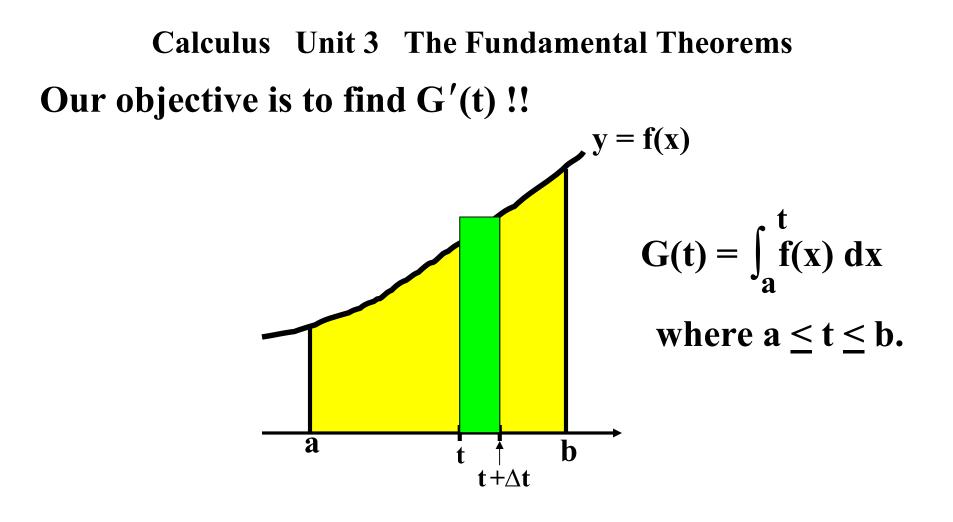


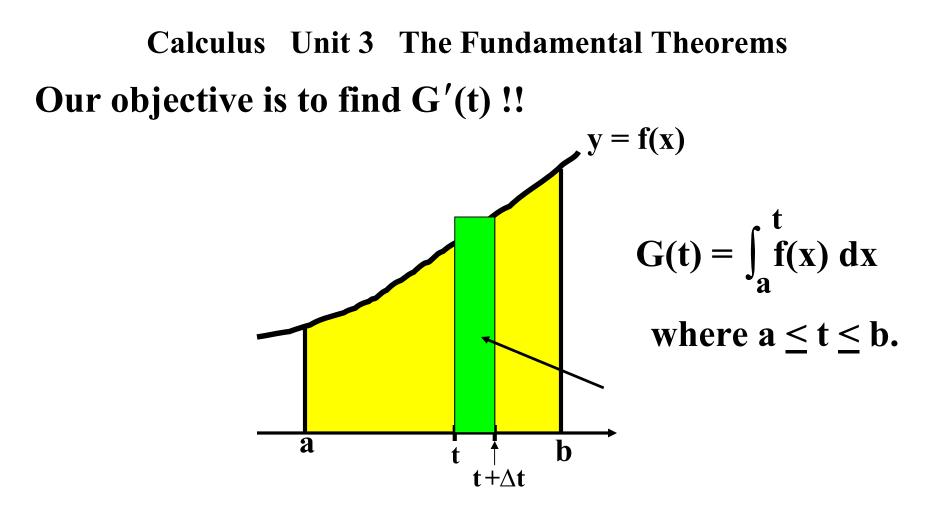
 $G(t + \Delta t) - G(t)$





 $\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) - \mathbf{G}(\mathbf{t})$





 $\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) - \mathbf{G}(\mathbf{t})$

Calculus Unit 3 The Fundamental Theorems Our objective is to find G'(t) !! y = f(x) $G(t) = \int_{a}^{t} f(x) dx$ where a < t < b. area

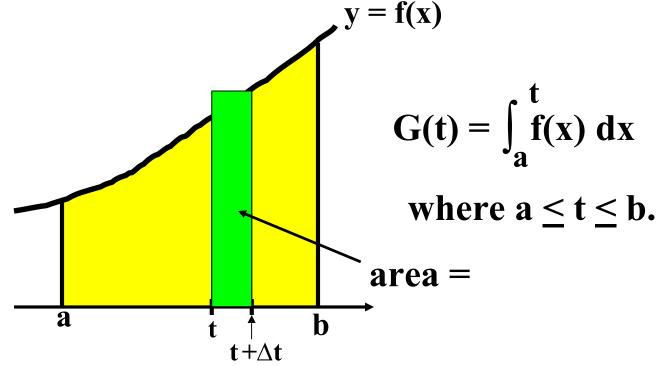
t

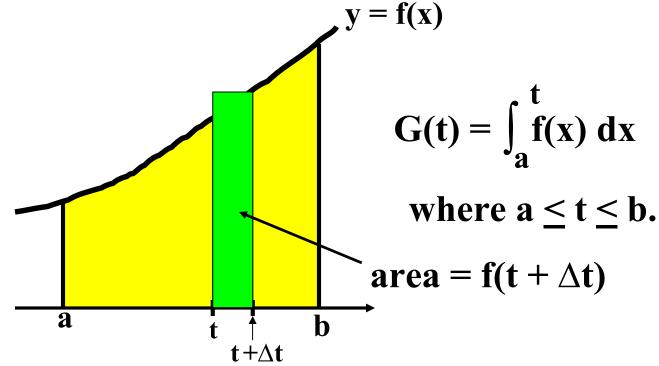
 $t + \Delta t$

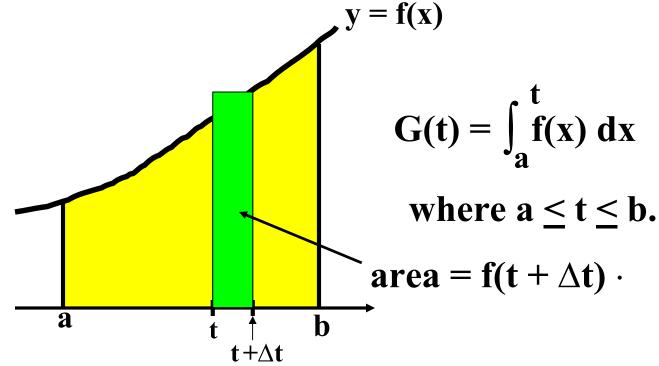
b

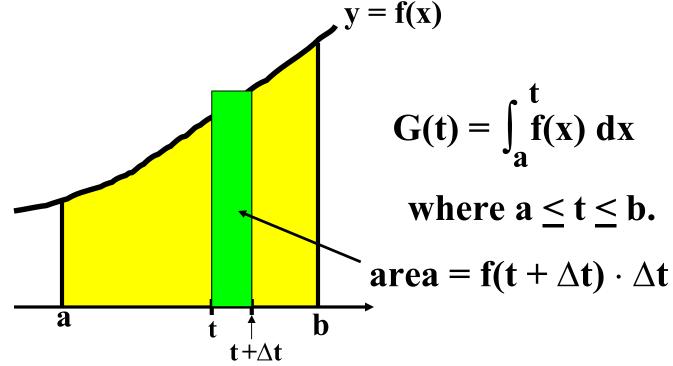
 $\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) - \mathbf{G}(\mathbf{t})$

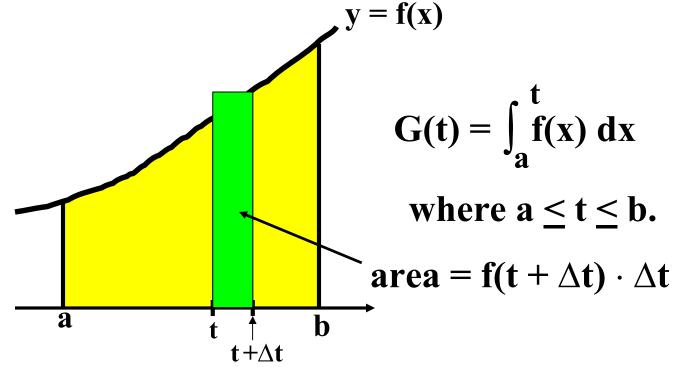
a

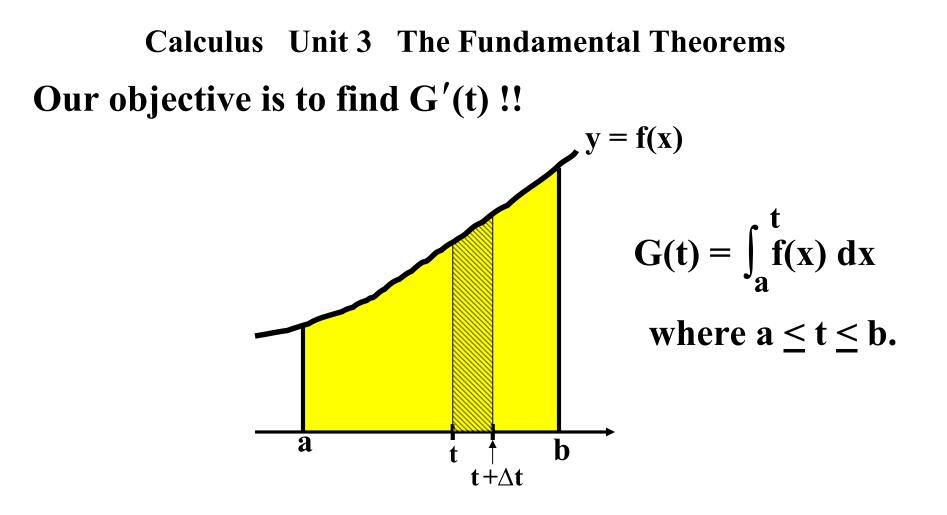


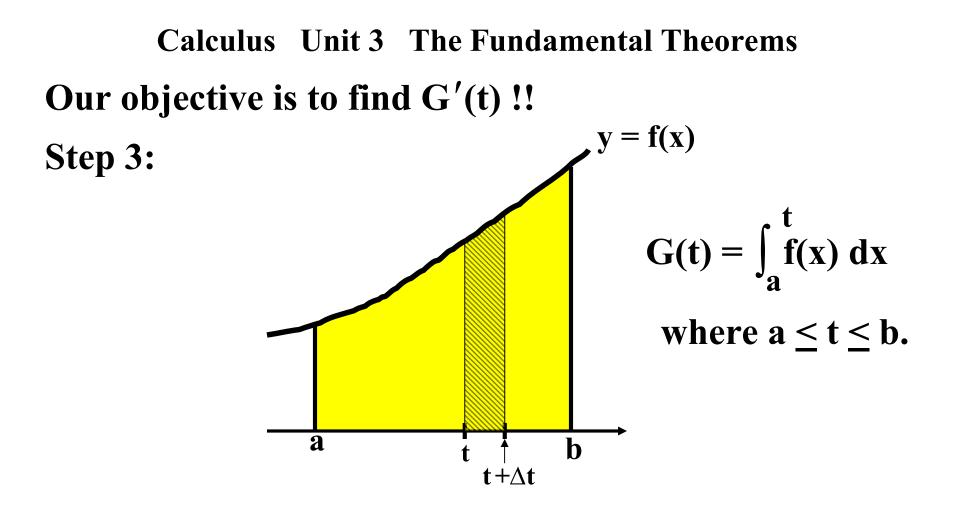


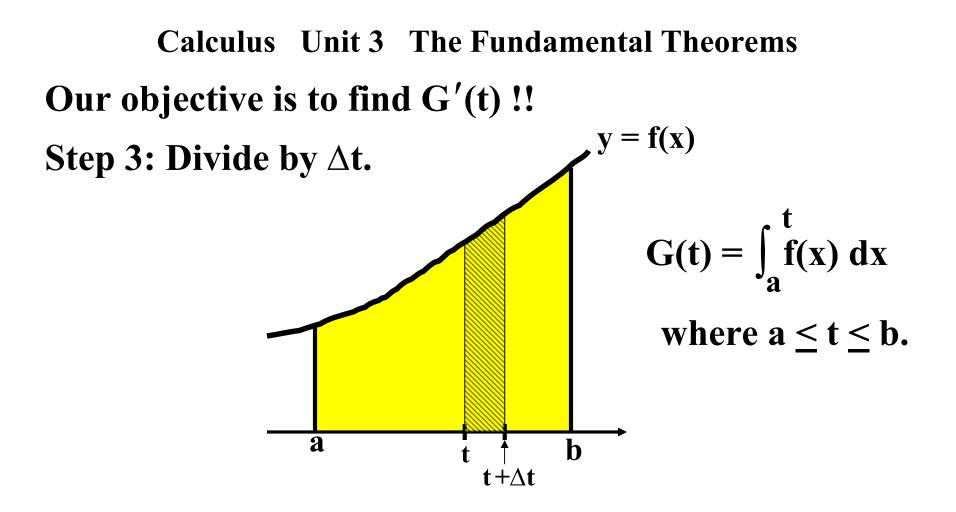


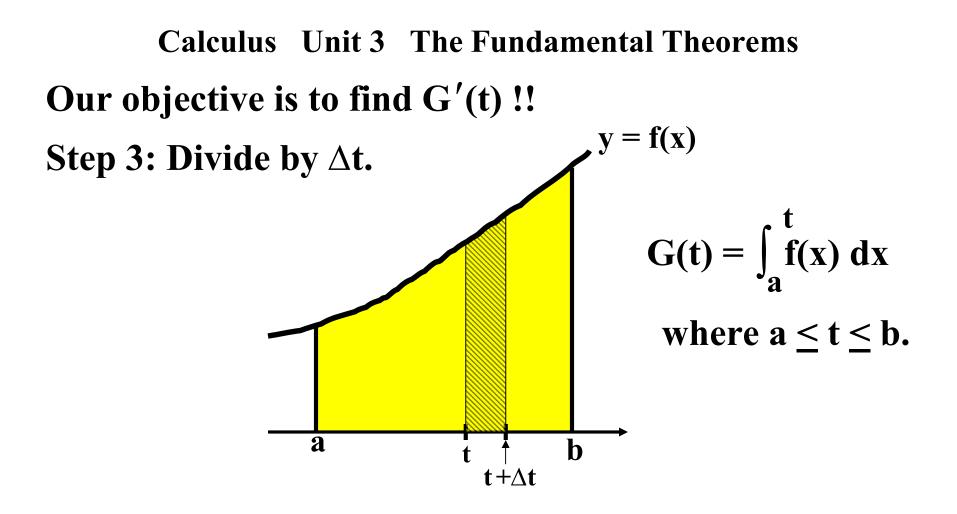




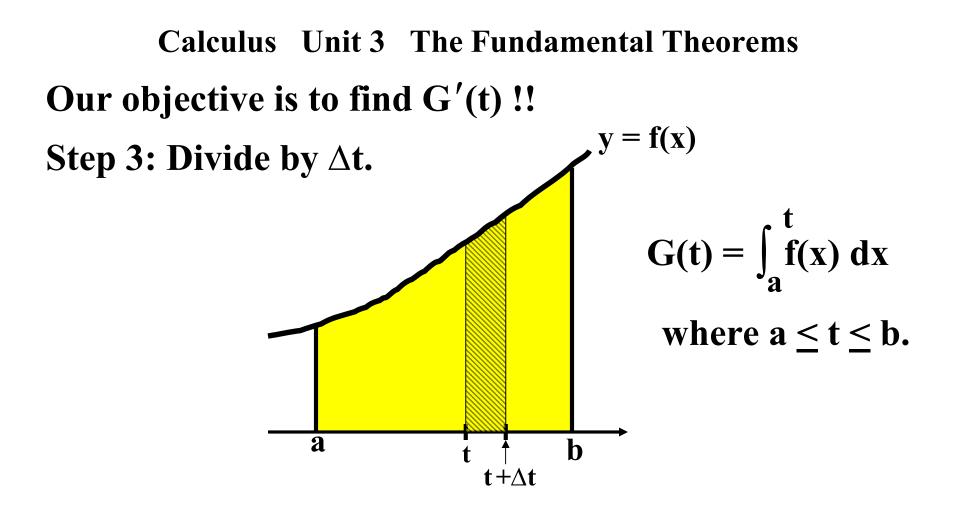


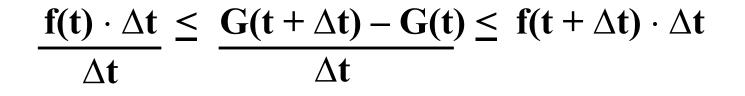


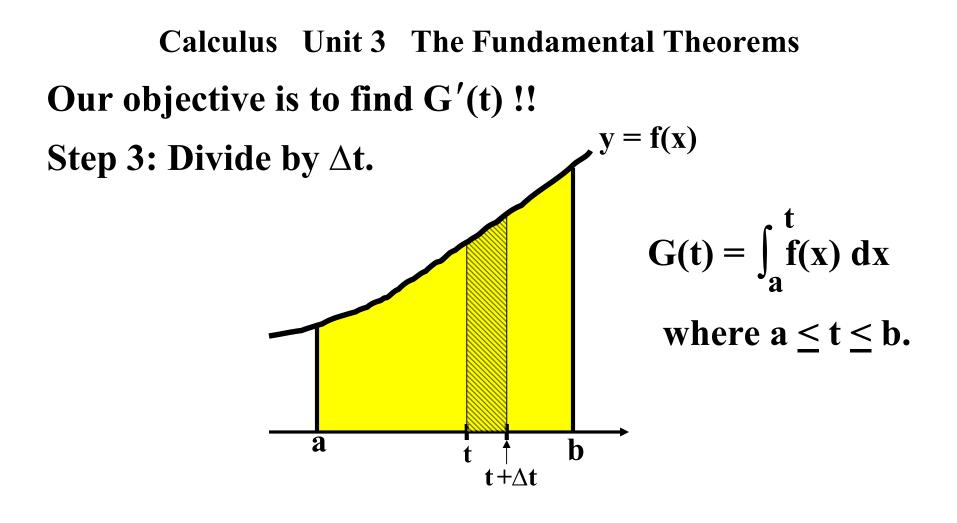


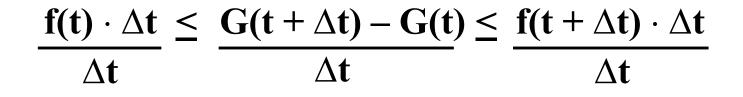


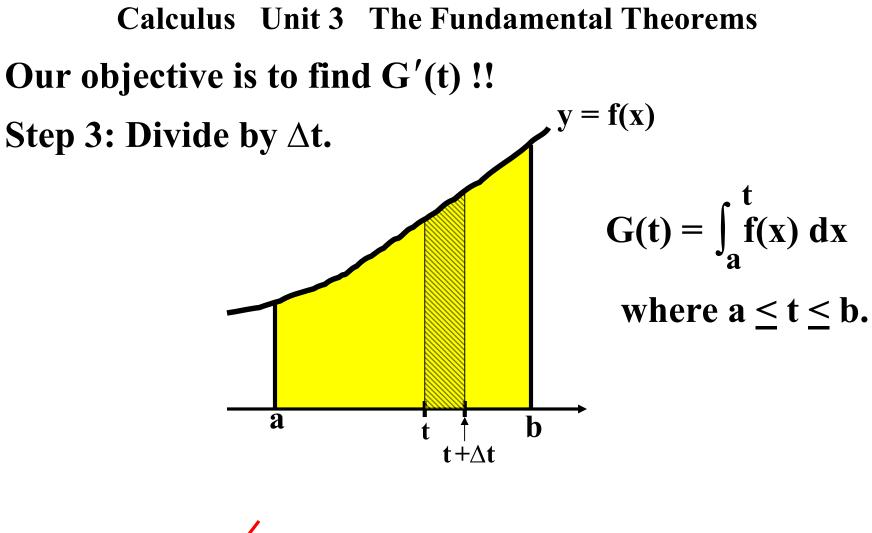
 $\mathbf{f(t)} \cdot \Delta \mathbf{t} \leq \frac{\mathbf{G(t + \Delta t)} - \mathbf{G(t)}}{\Delta t} \leq \mathbf{f(t + \Delta t)} \cdot \Delta t$



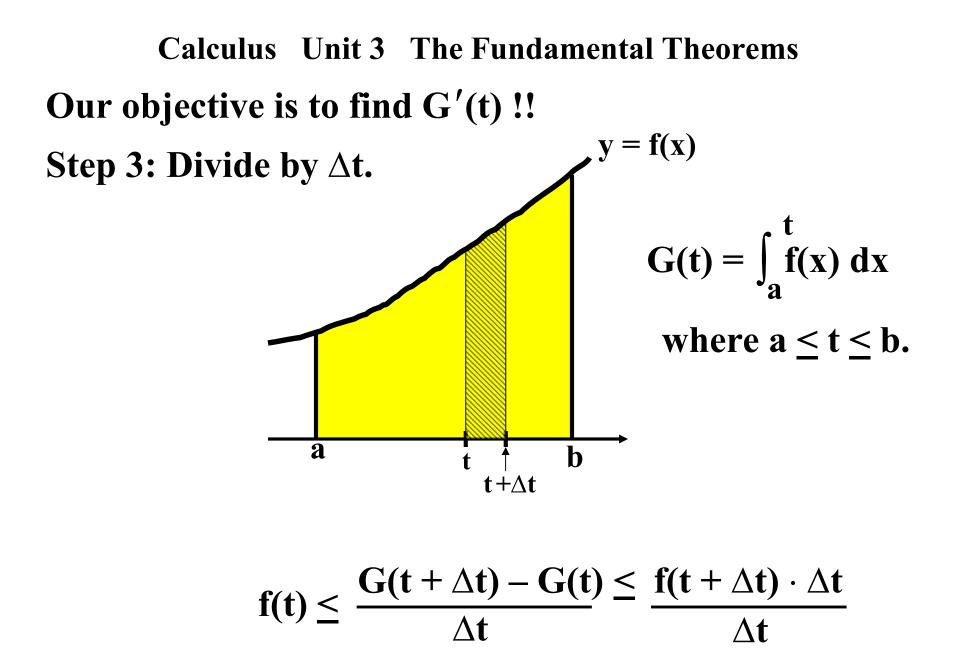


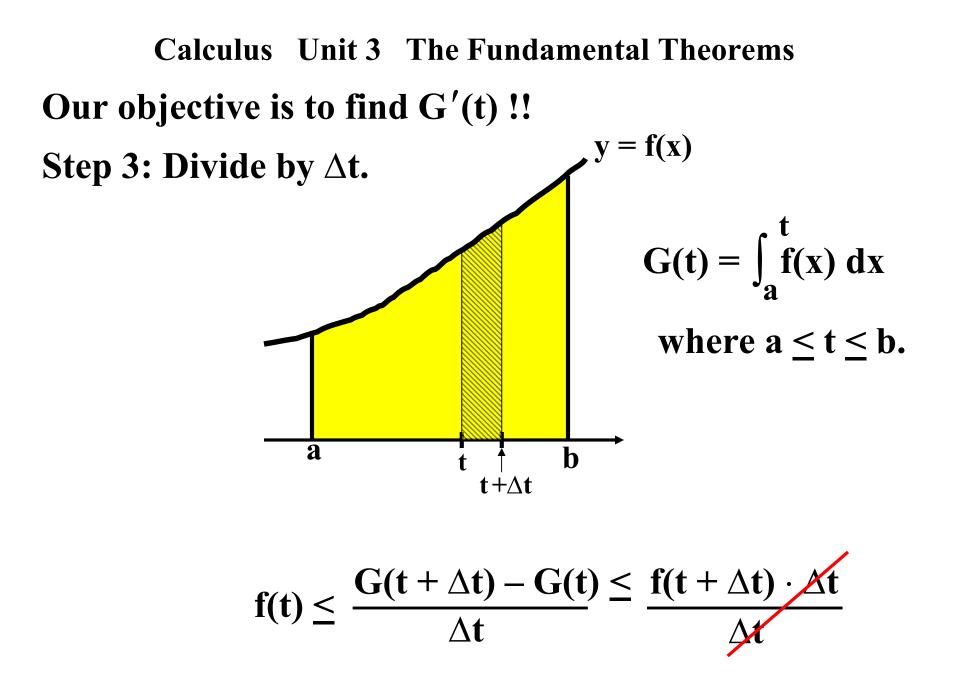


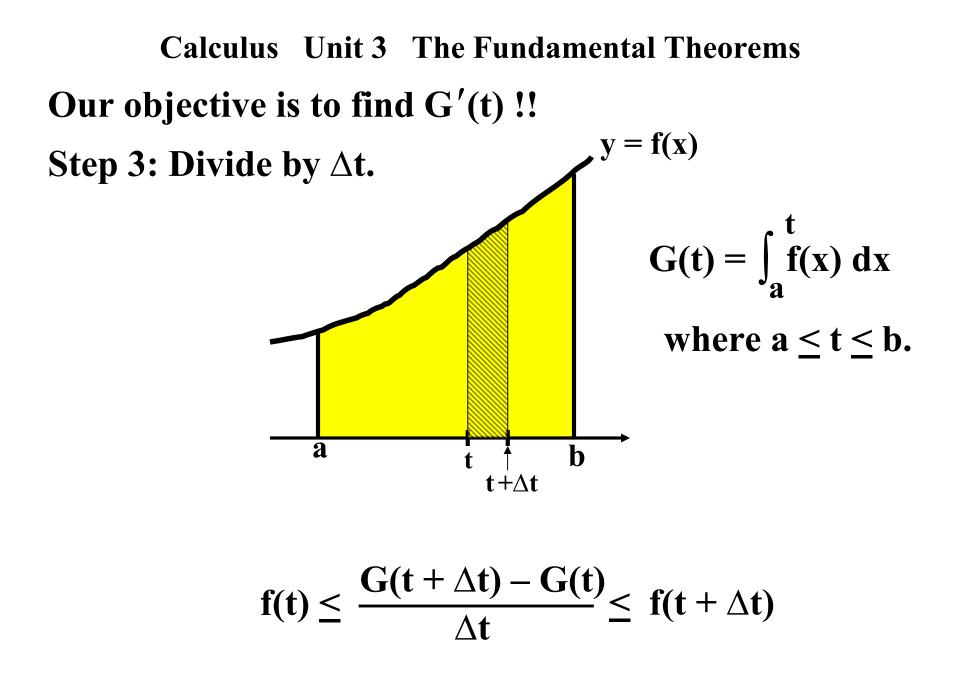


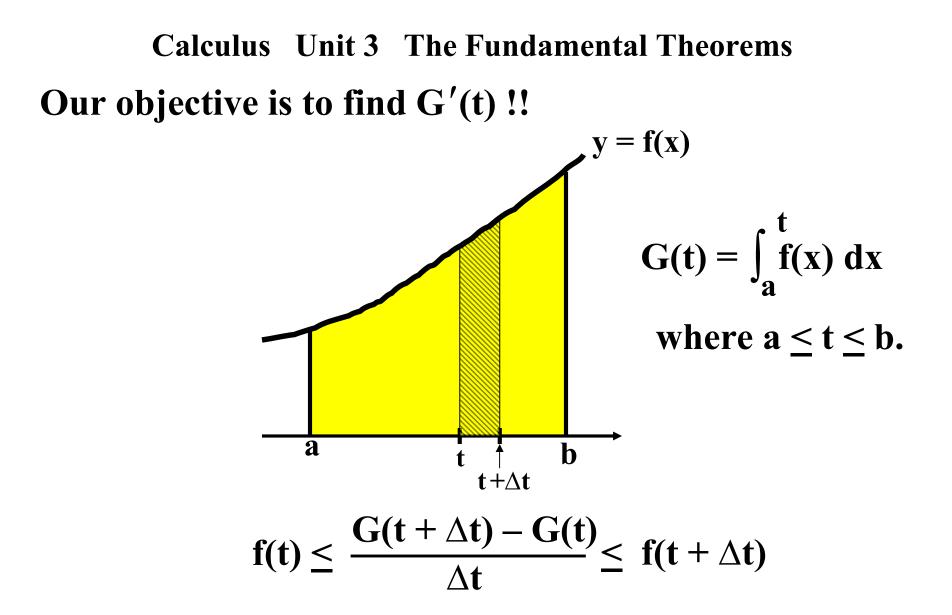


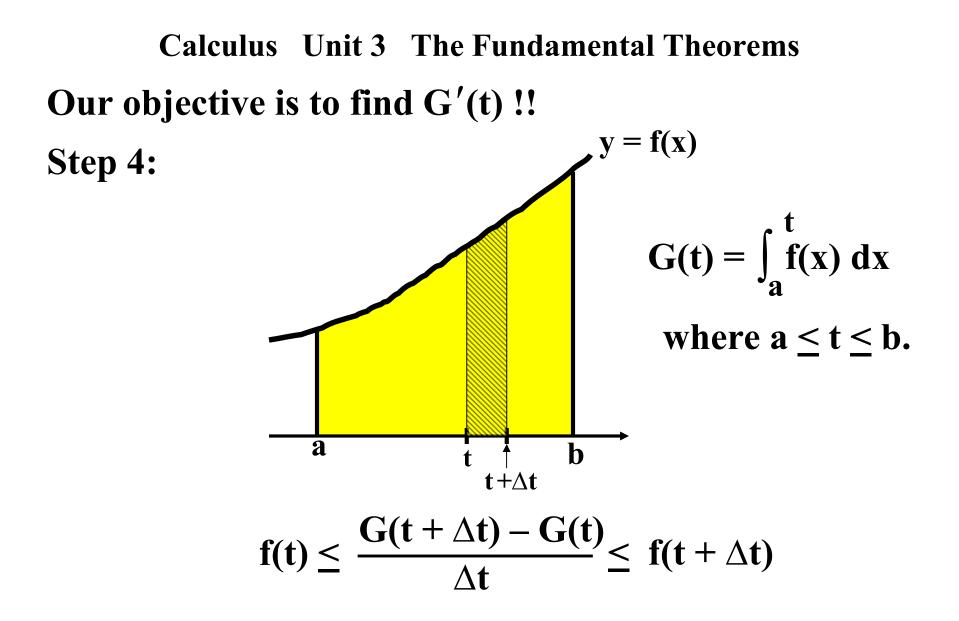
$$\frac{\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}} \leq \frac{\mathbf{G}(\mathbf{t} + \Delta \mathbf{t}) - \mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \frac{\mathbf{f}(\mathbf{t} + \Delta \mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}}$$

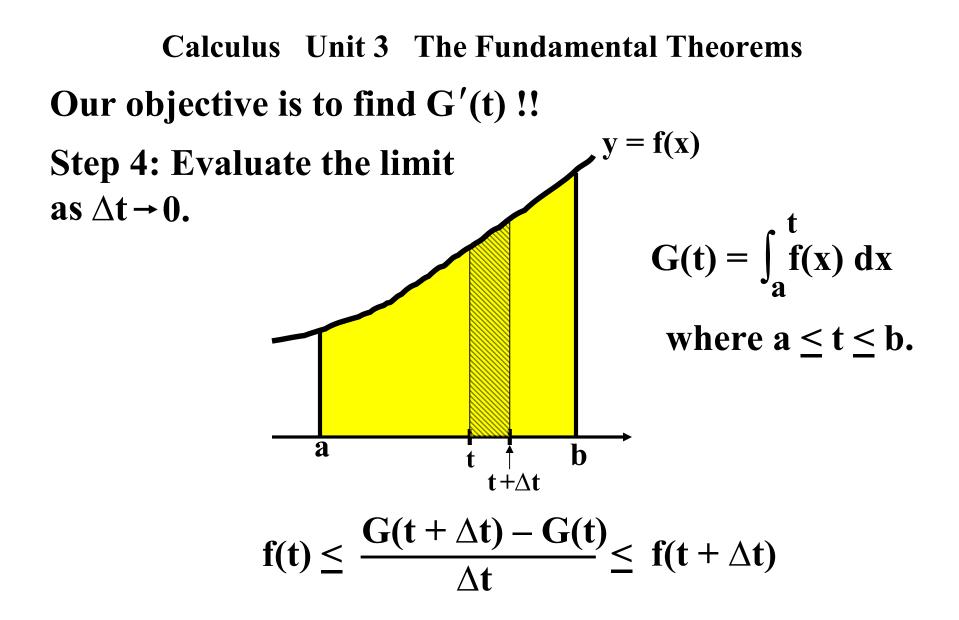


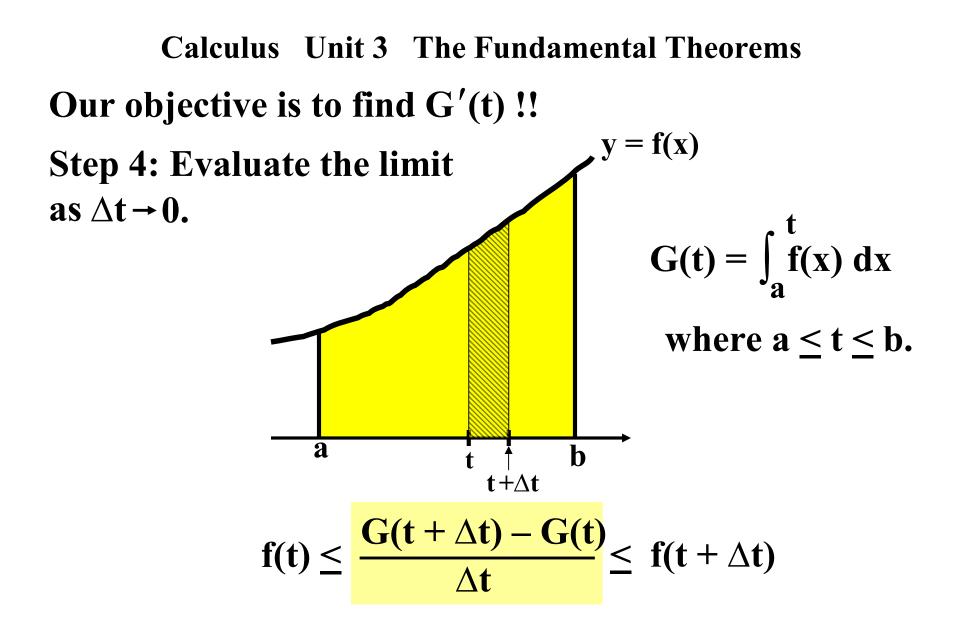


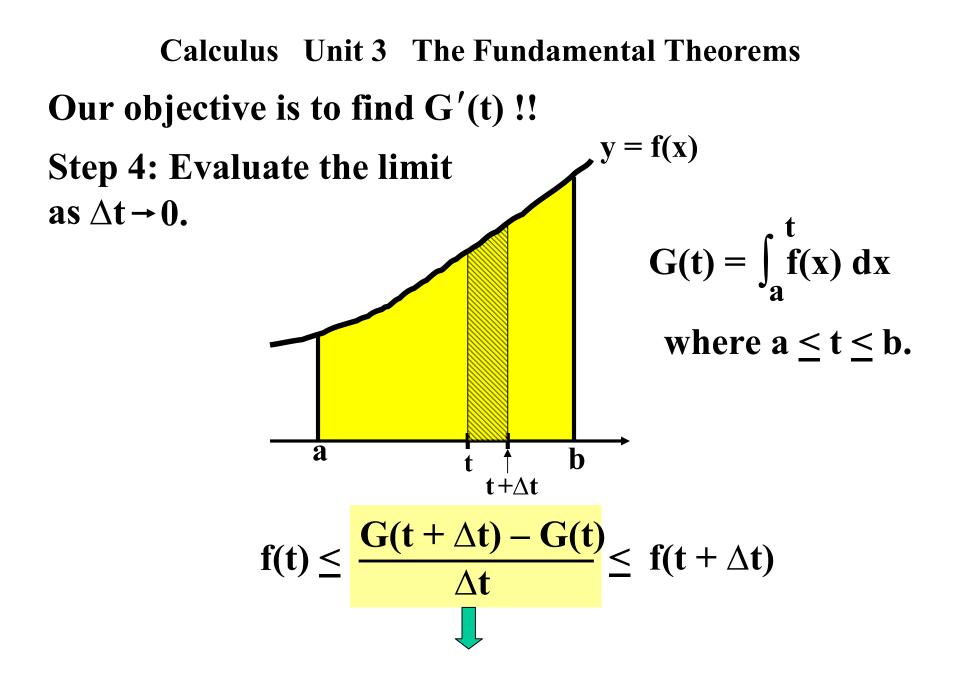


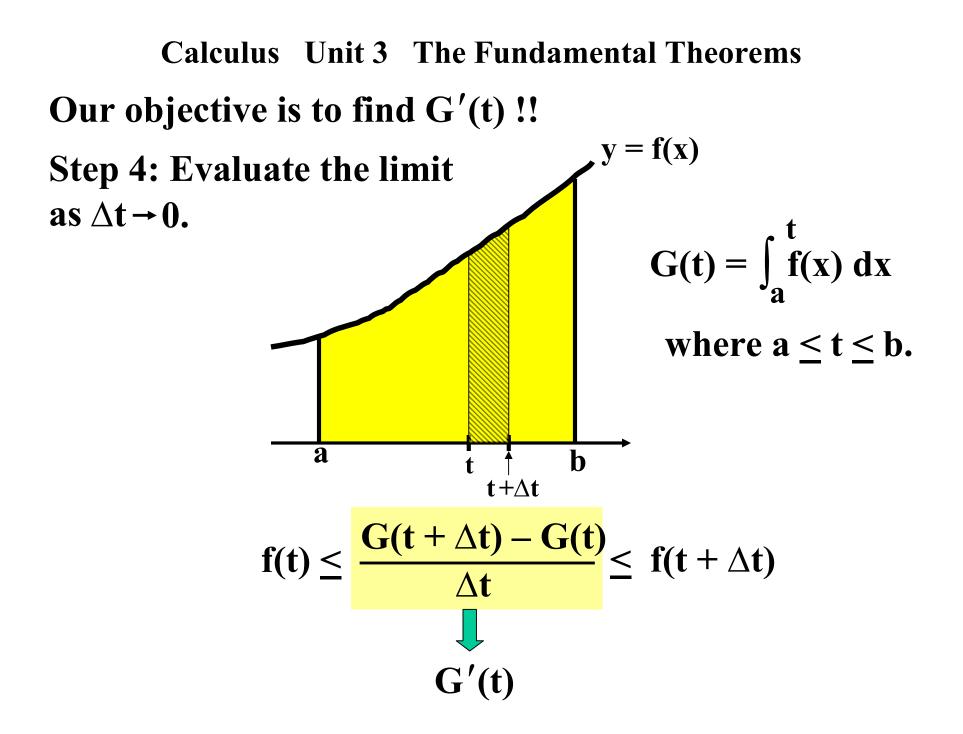


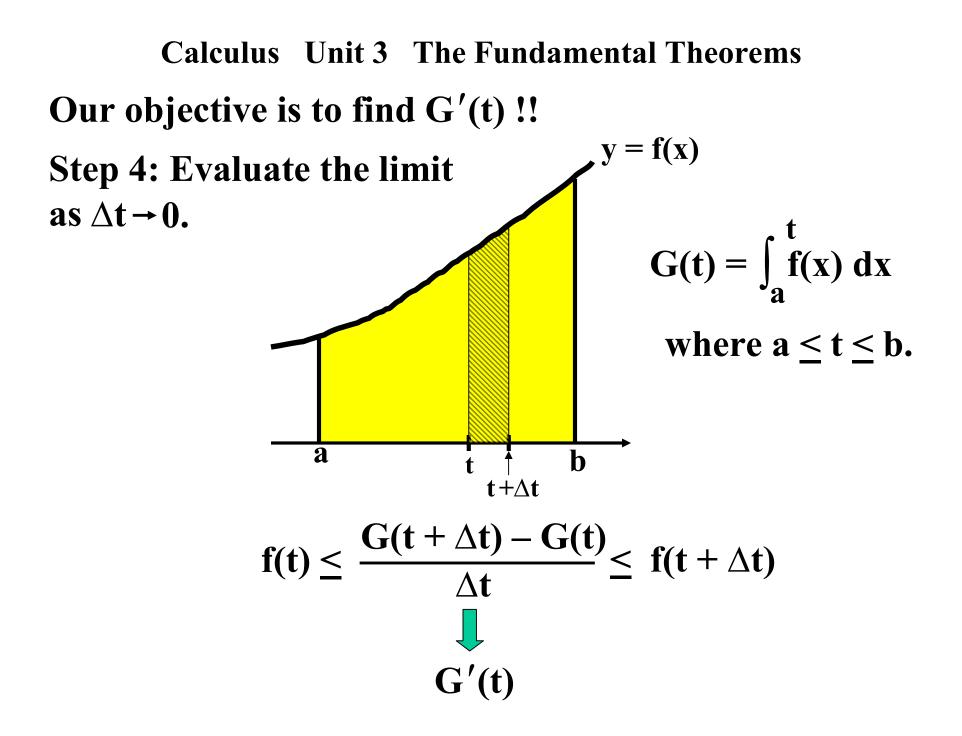


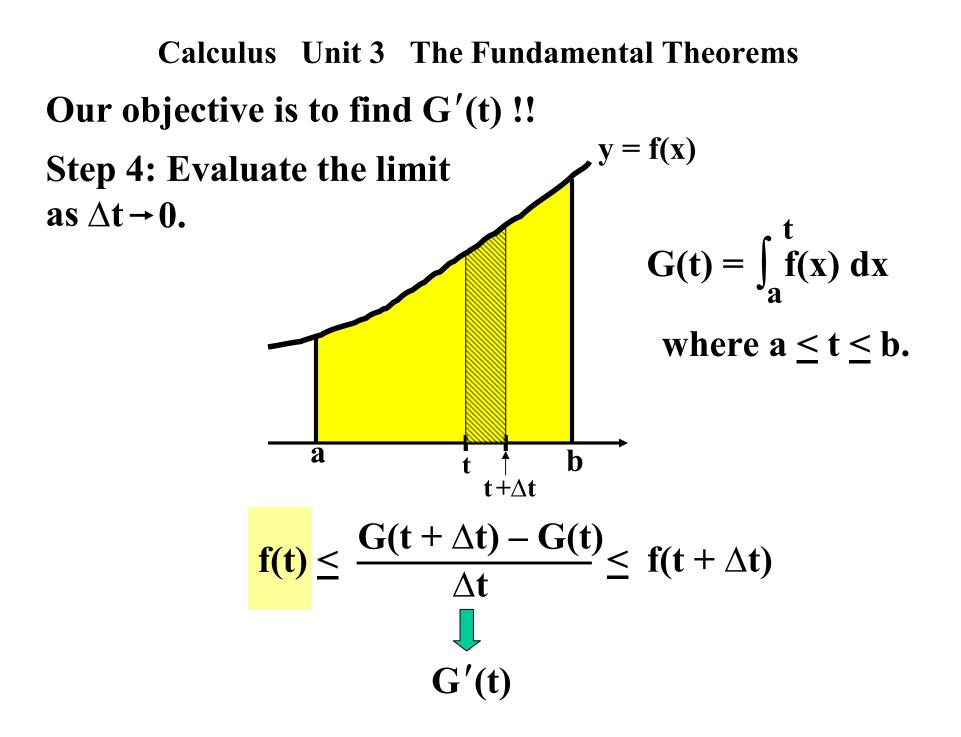


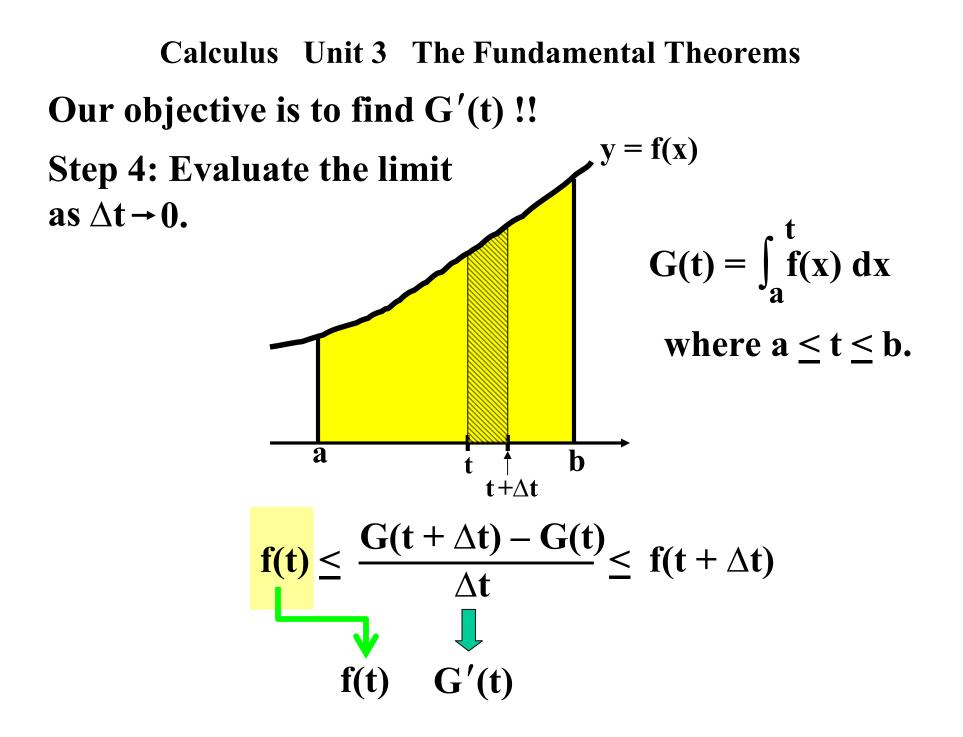


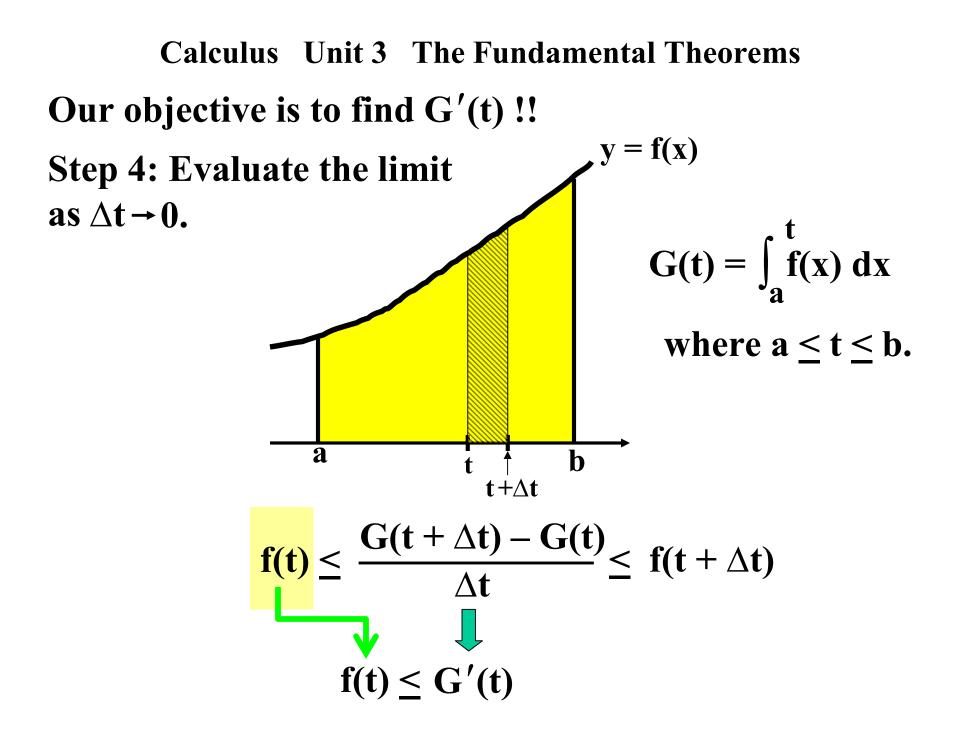


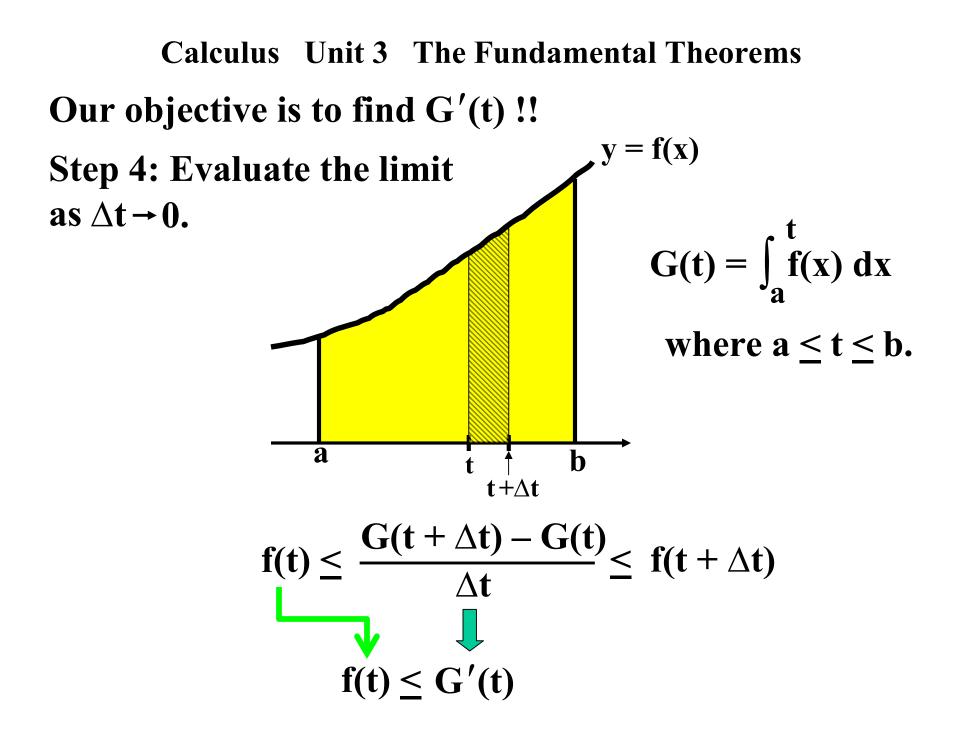


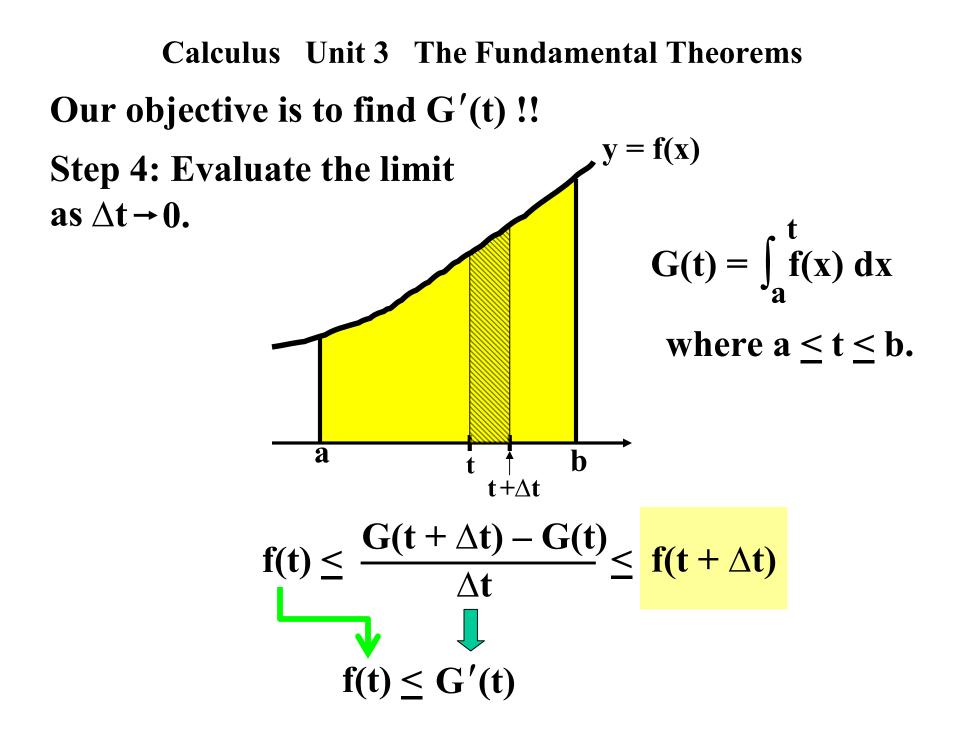


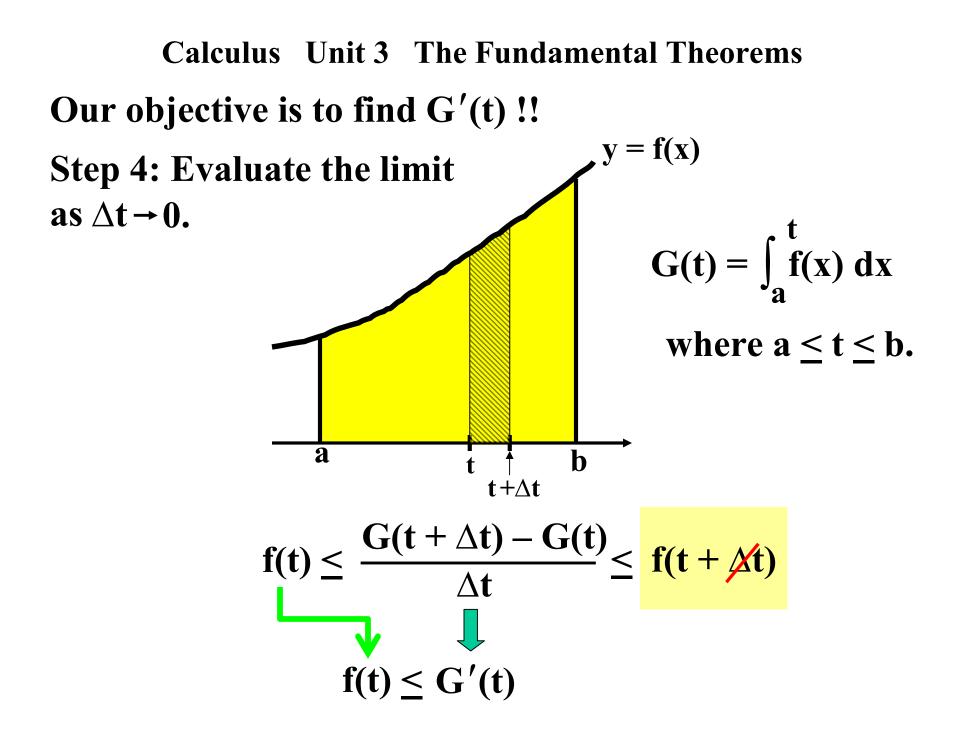


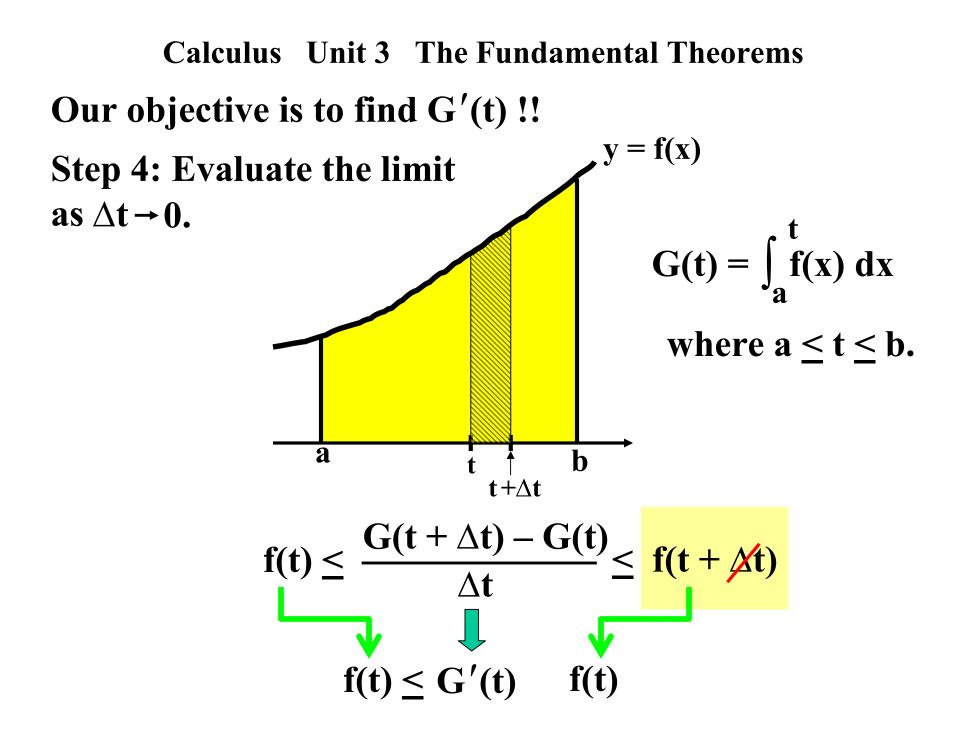


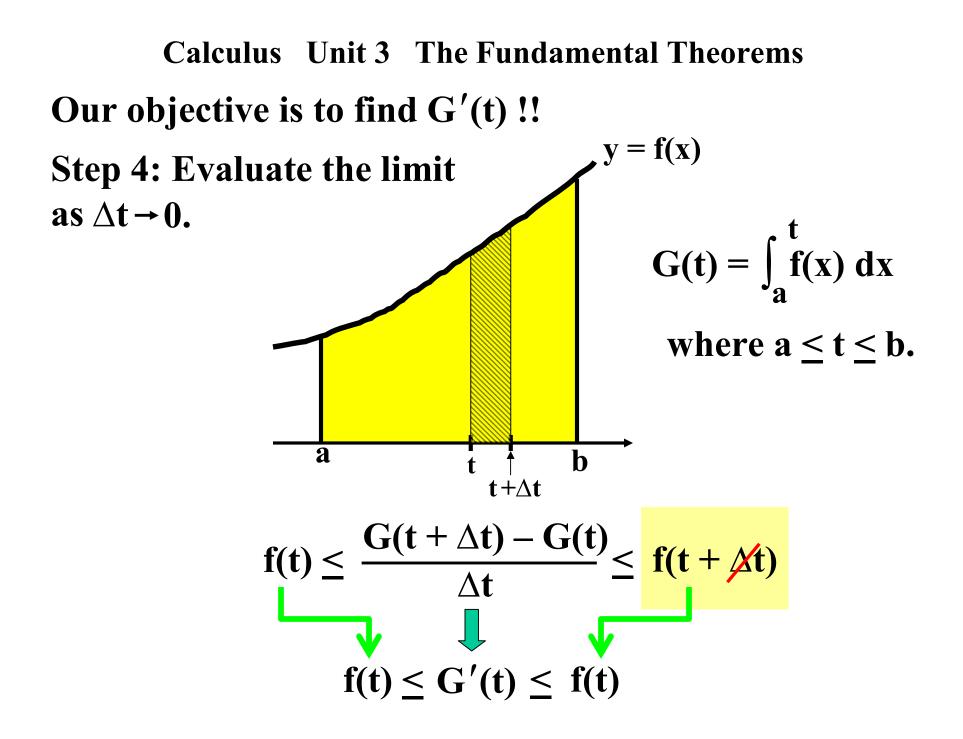


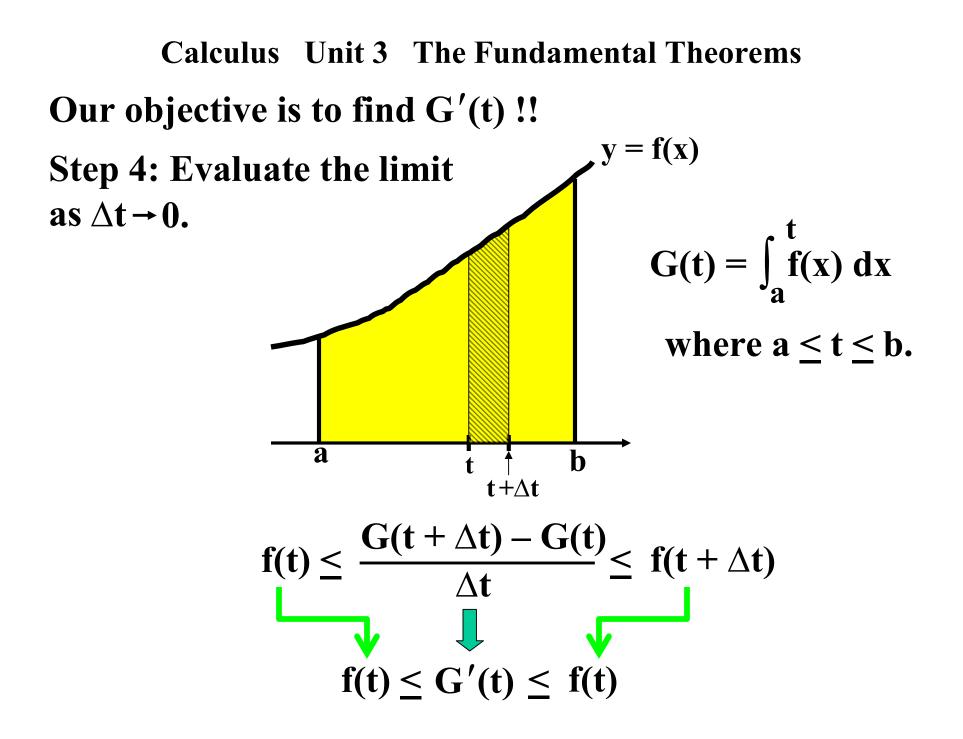


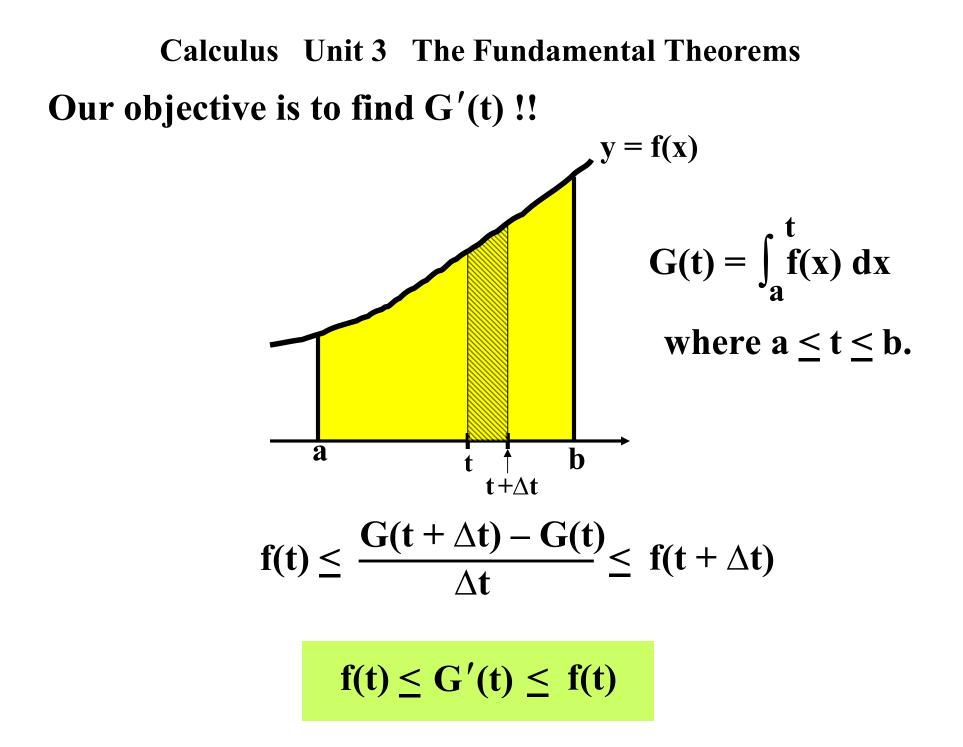


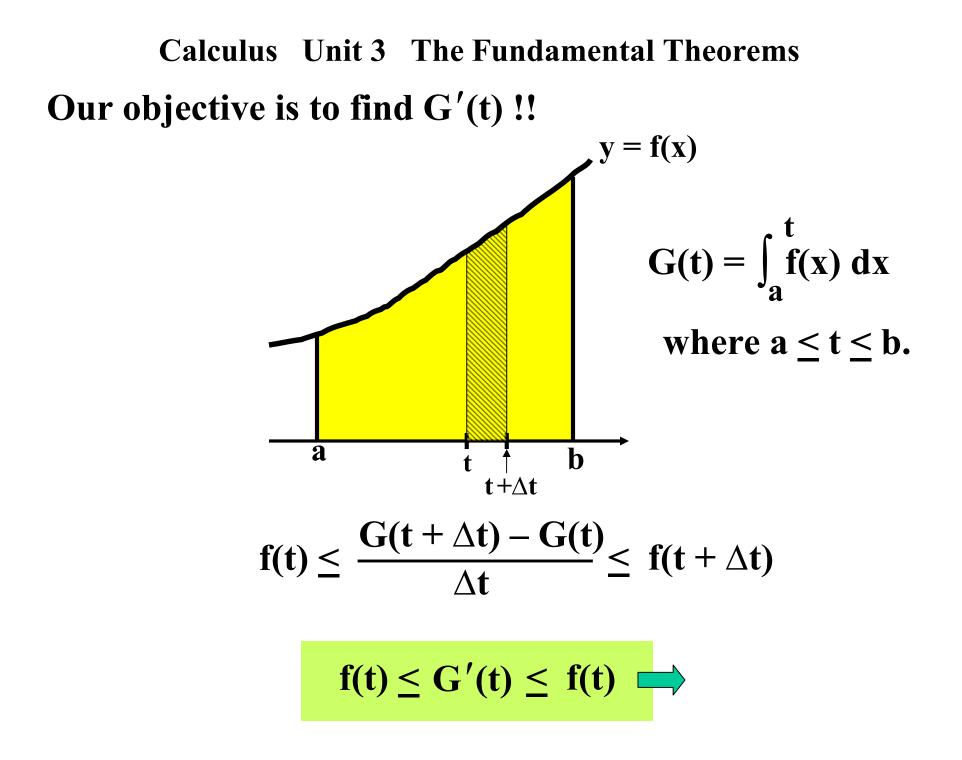


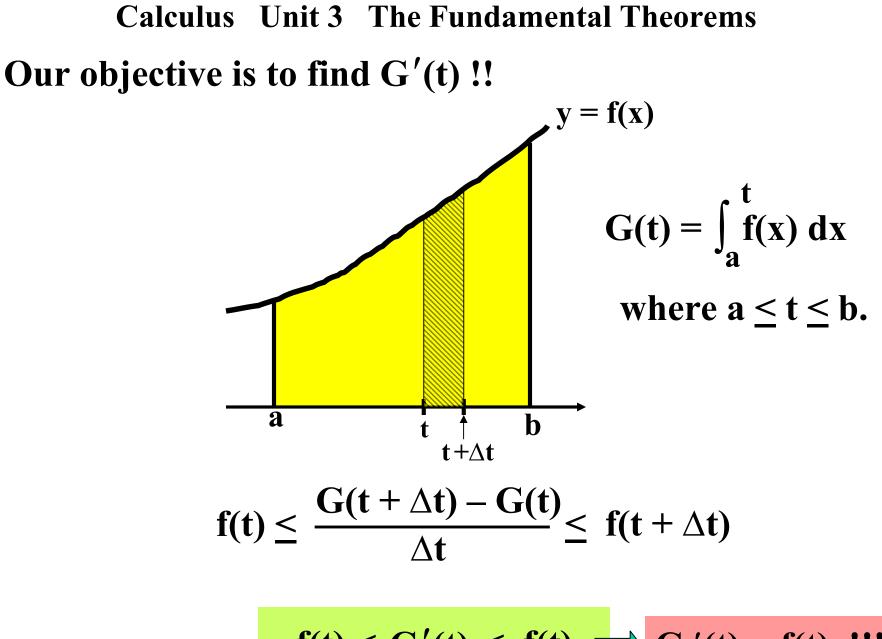






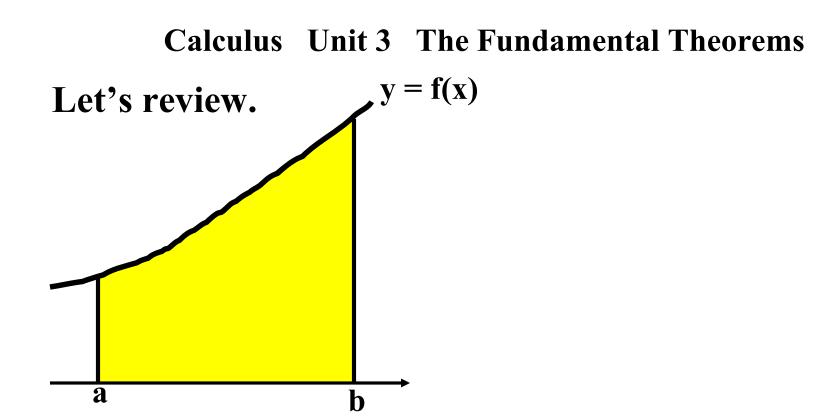


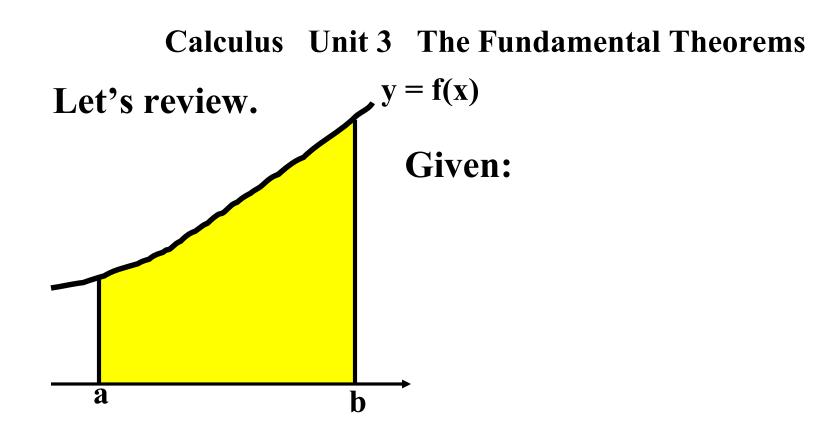


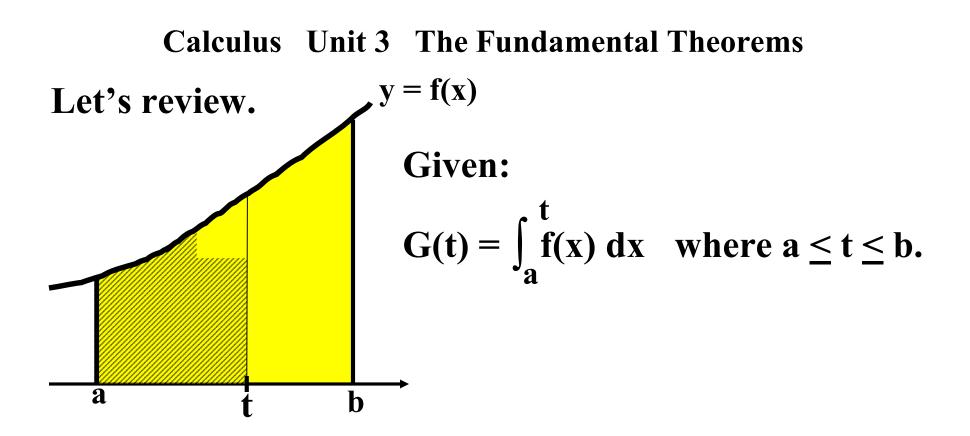


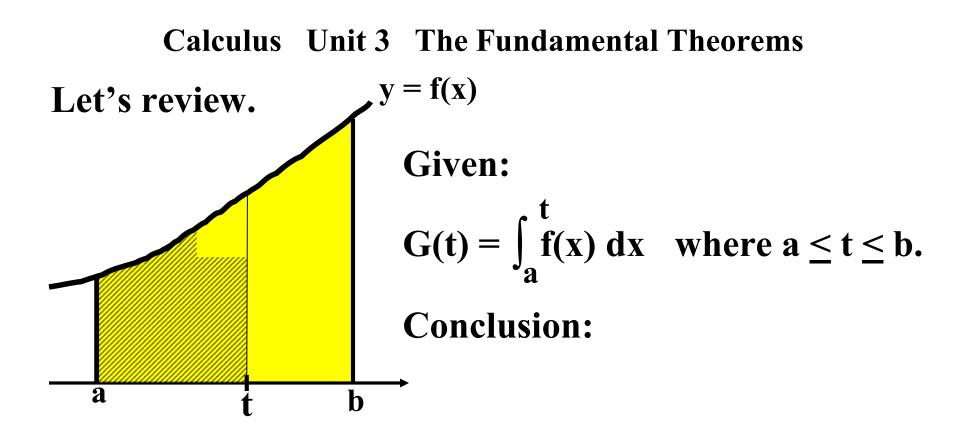
 $\mathbf{f}(\mathbf{t}) \leq \mathbf{G}'(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}) \implies \mathbf{G}'(\mathbf{t}) = \mathbf{f}(\mathbf{t}) \quad !!!$

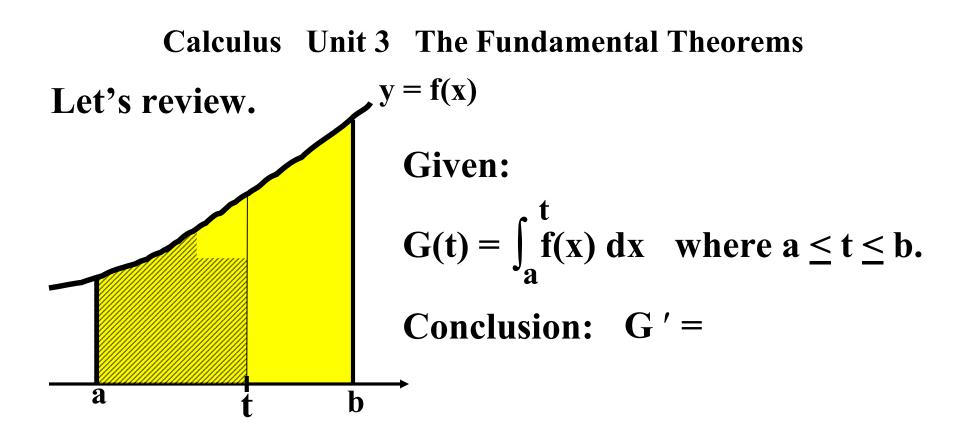
Calculus Unit 3 The Fundamental Theorems Let's review.

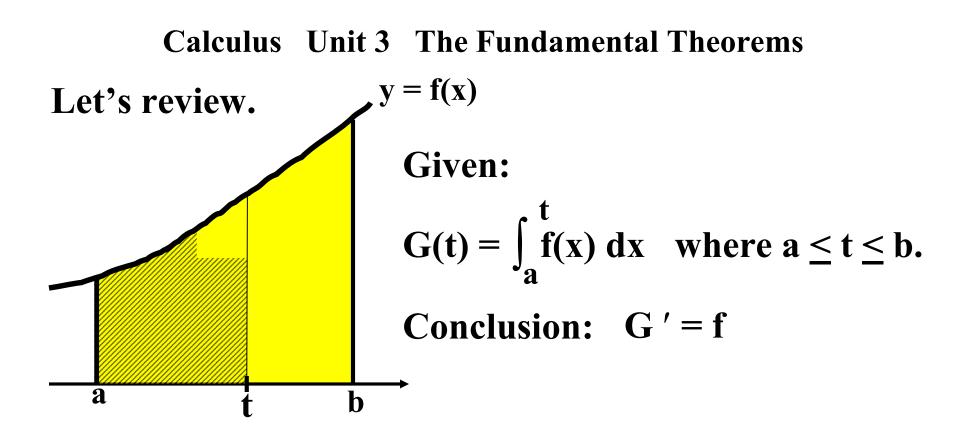


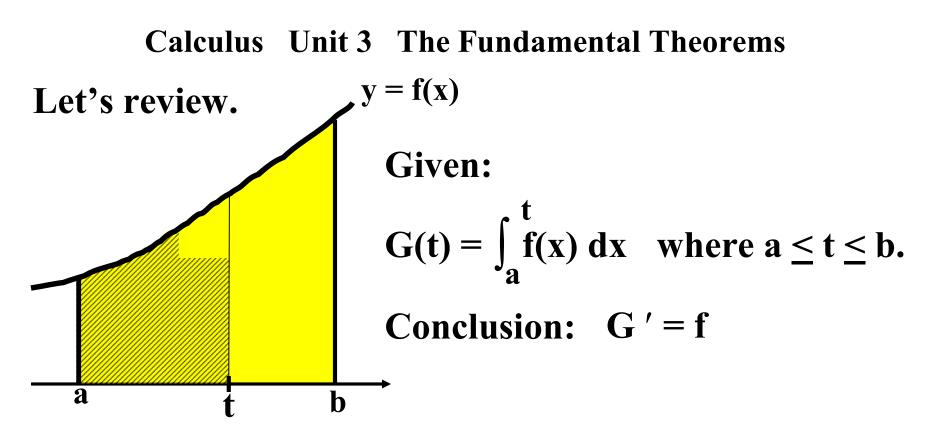




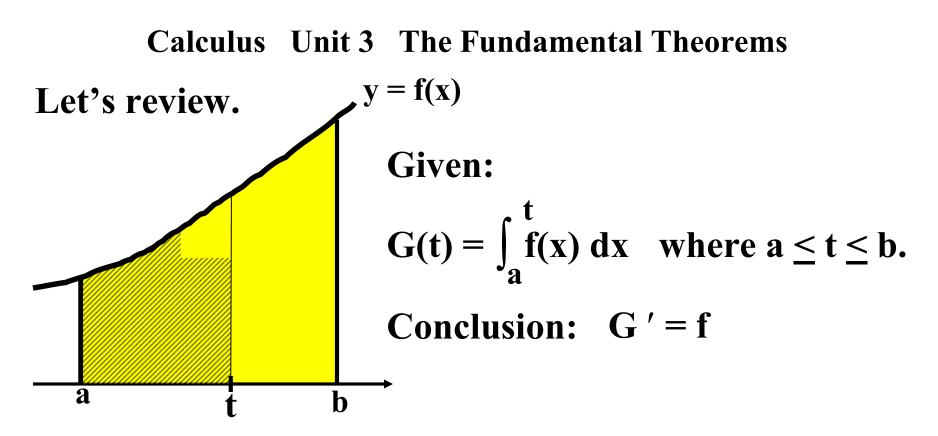




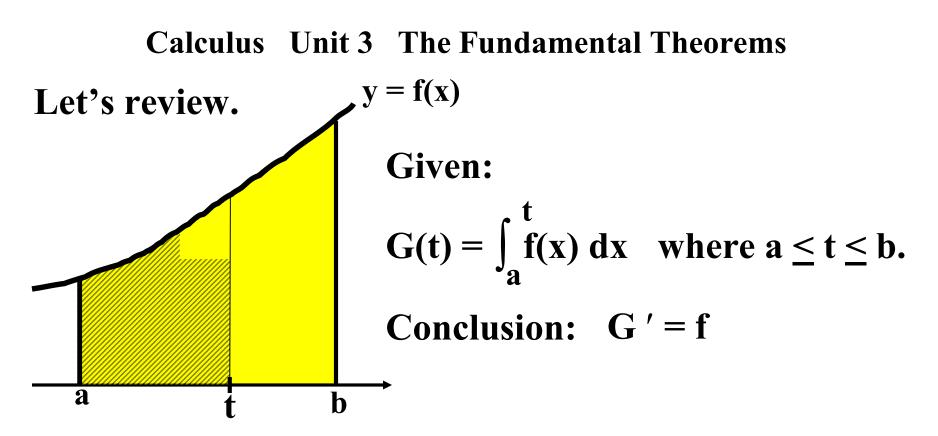




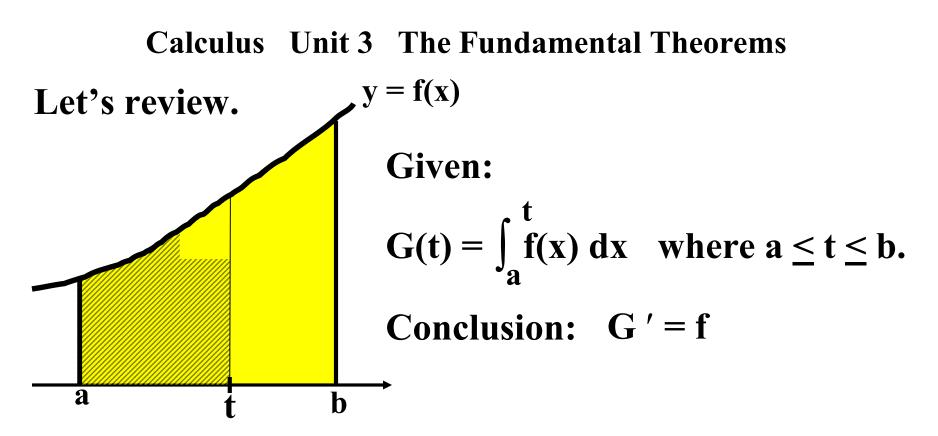
This is called the first fundamental theorem of calculus.



This is called the first fundamental theorem of calculus. Since G is a function whose derivative is f,

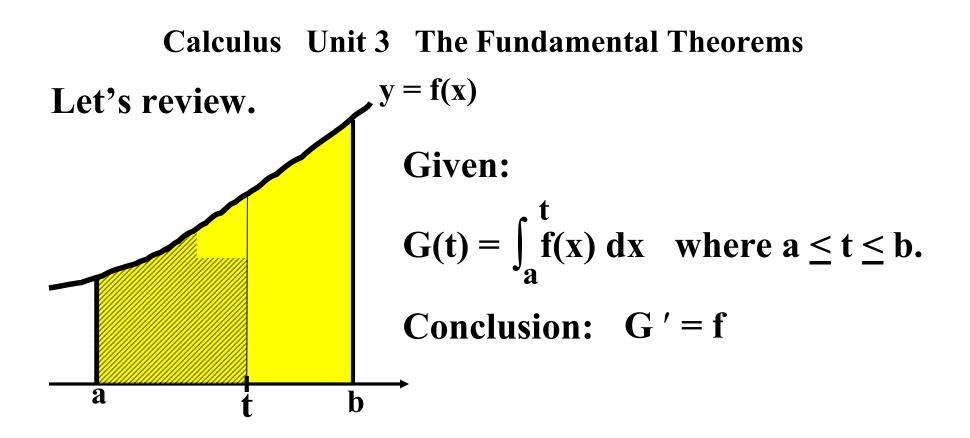


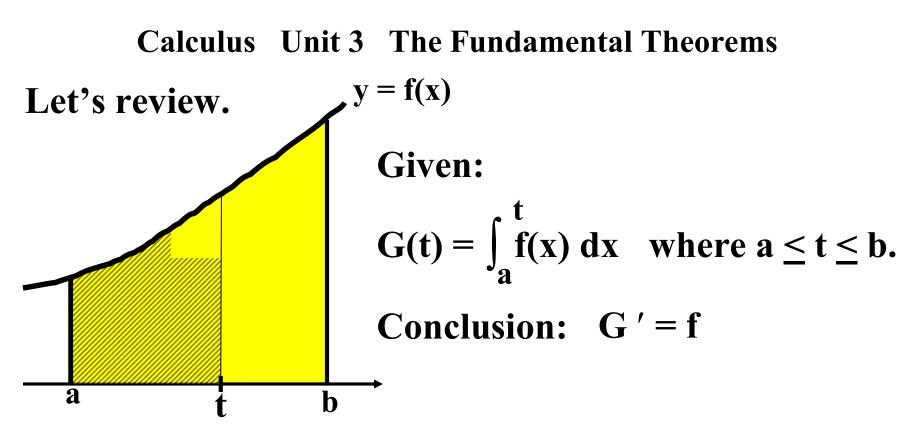
This is called the first fundamental theorem of calculus. Since G is a function whose derivative is f, it is called an <u>antiderivative</u> of f.



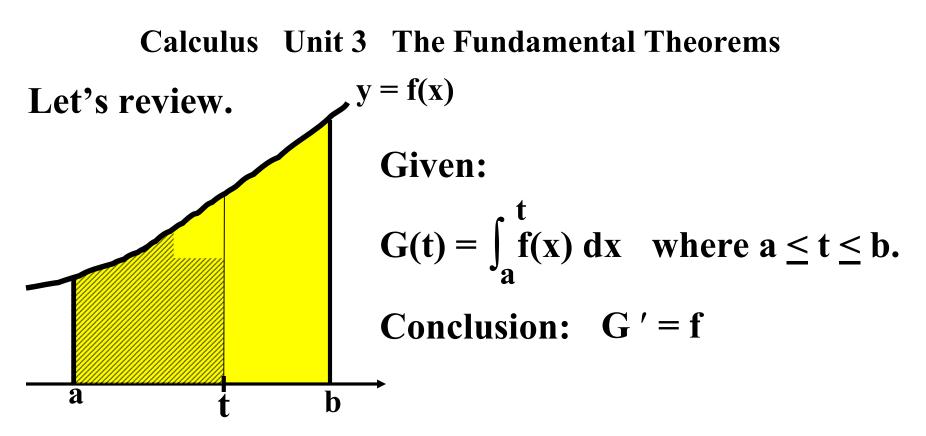
This is called the first fundamental theorem of calculus. Since G is a function whose derivative is f, it is called an <u>antiderivative</u> of f.

The process of 'finding' an antiderivative function is called integration.





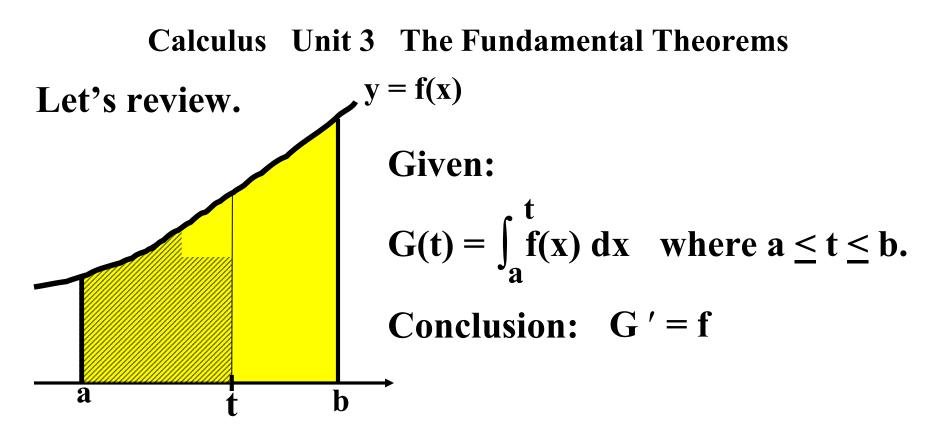
Let F represent any other function such that F ' = f.



Let F represent any other function such that F' = f. 'Clearly', F(t) = G(t) + C for some <u>constant</u> C.

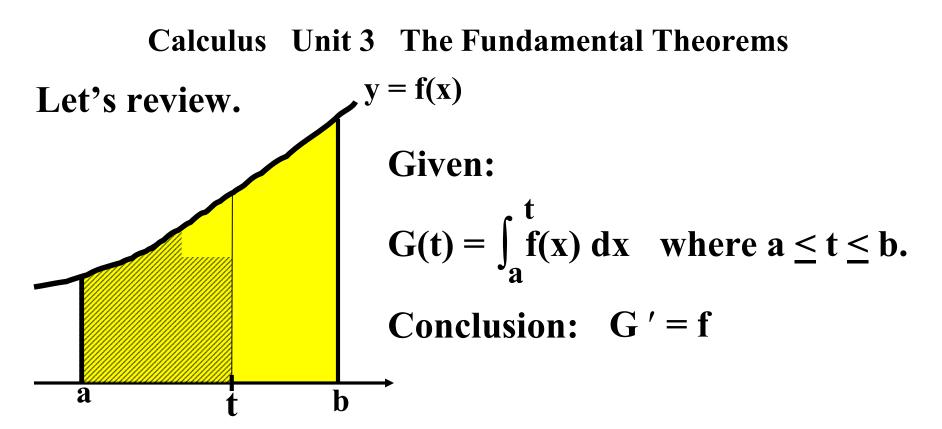


Let F represent any other function such that F' = f. 'Clearly', F(t) = G(t) + C for some <u>constant</u> C. Therefore, $F(t) = \int_{a}^{t} f(x) dx + C$ where $a \le t \le b$



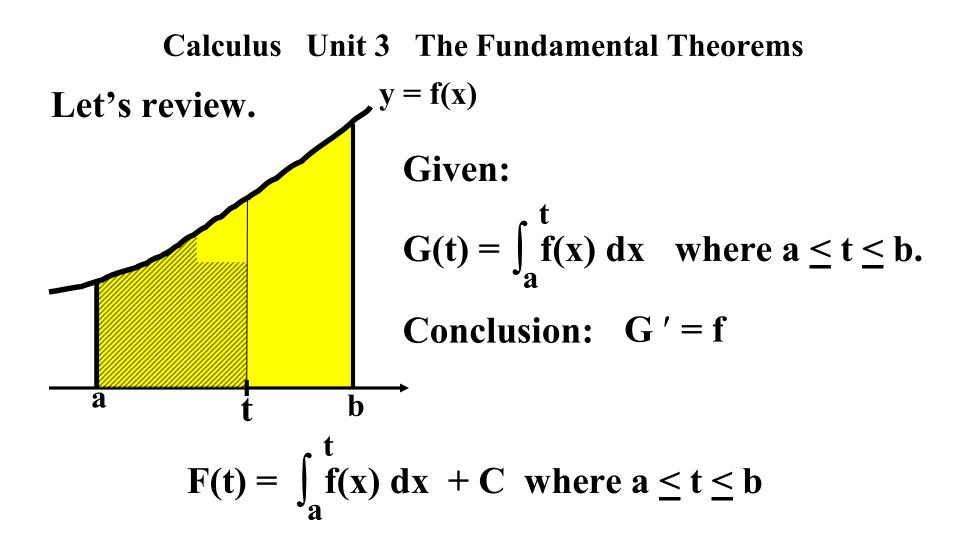
Let F represent any other function such that F' = f. 'Clearly', F(t) = G(t) + C for some <u>constant</u> C. Therefore, $F(t) = \int_{a}^{t} f(x) dx + C$ where $a \le t \le b$

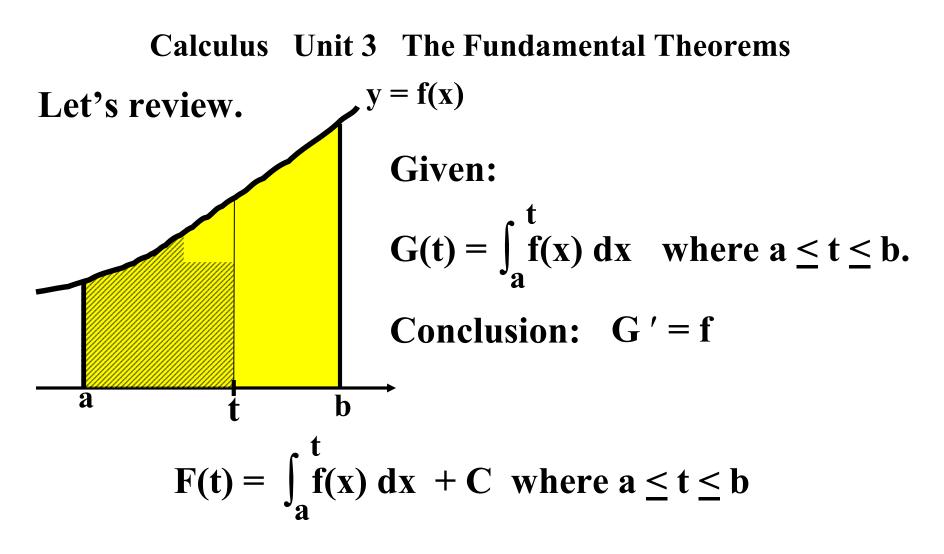
Make sure you get this !!



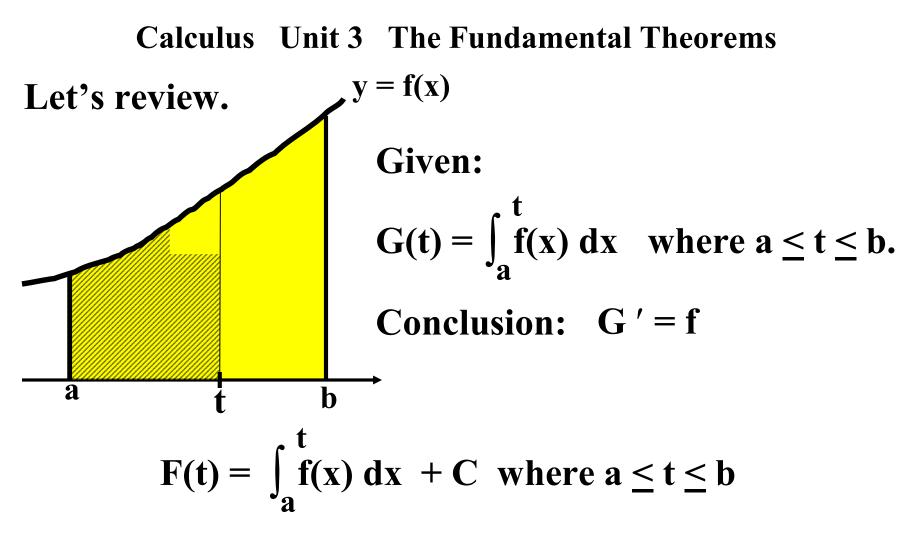
Let F represent any other function such that F' = f. 'Clearly', F(t) = G(t) + C for some <u>constant</u> C. Therefore, $F(t) = \int_{a}^{t} f(x) dx + C$ where $a \le t \le b$

Make sure you get this !! Remember, C is a constant.

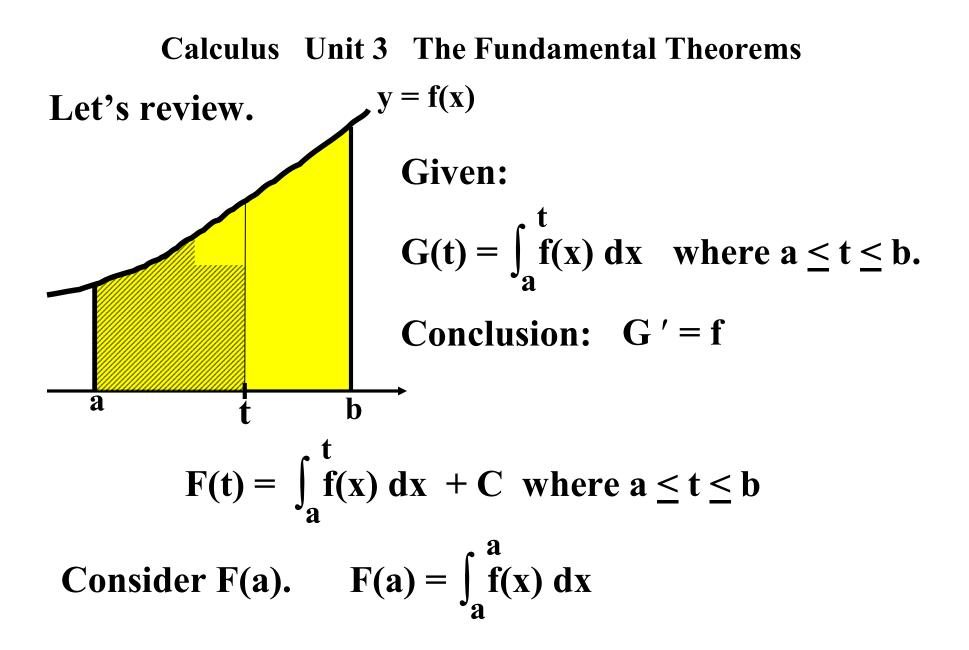


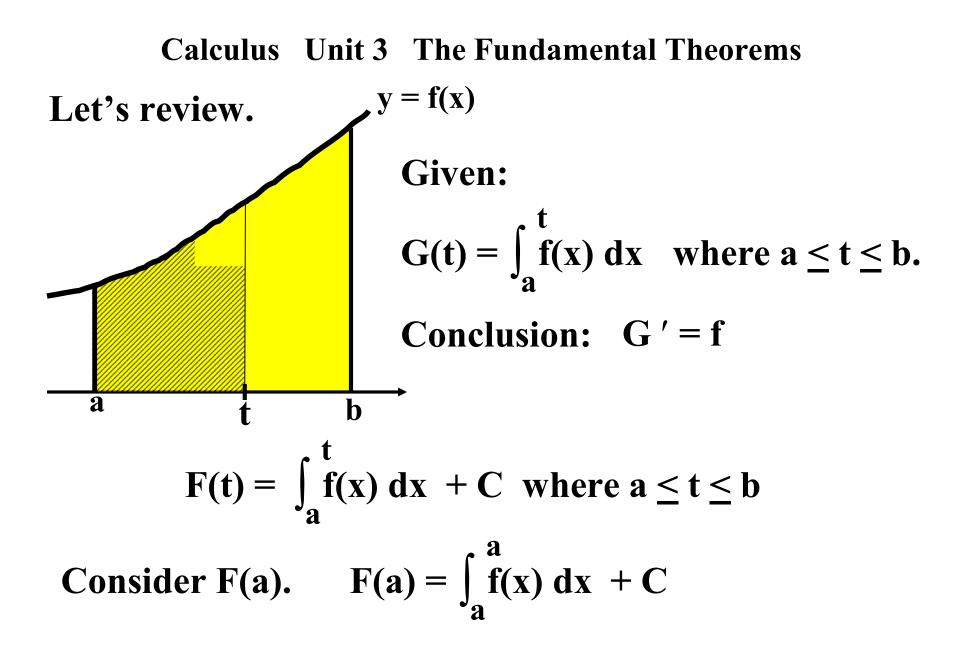


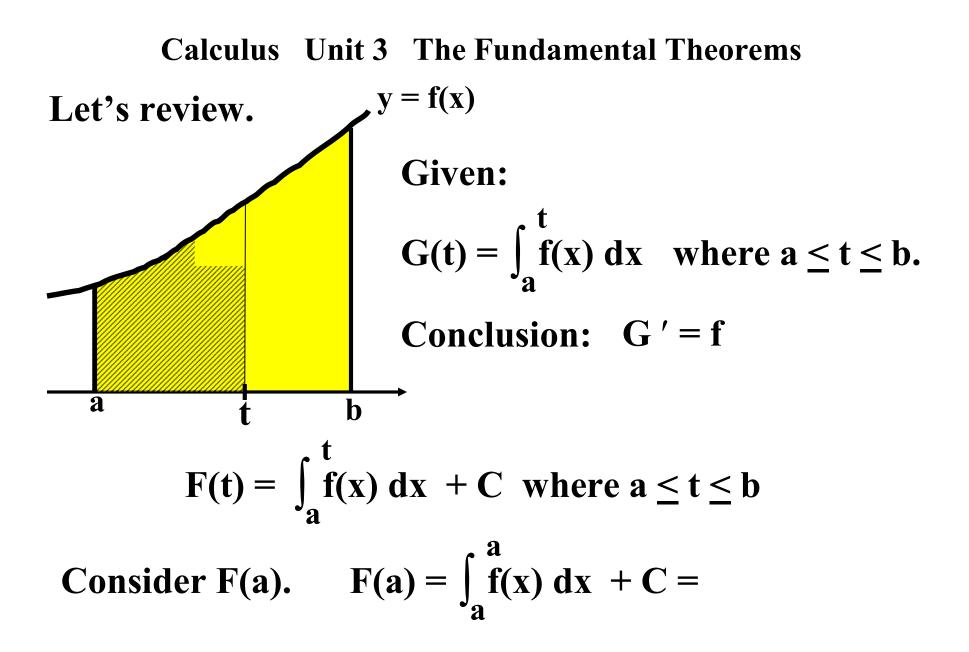
Consider F(a).

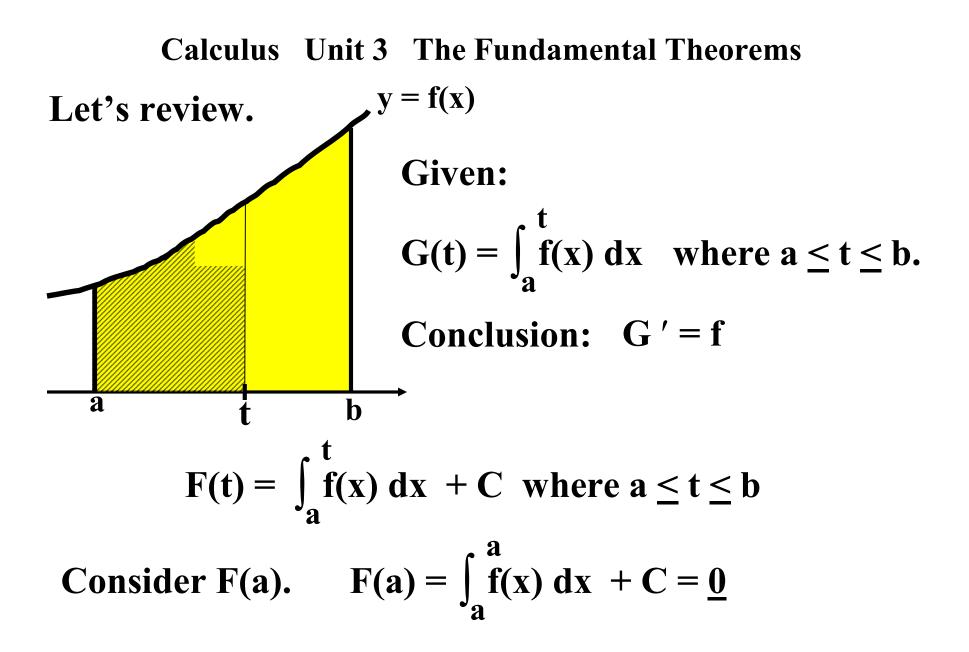


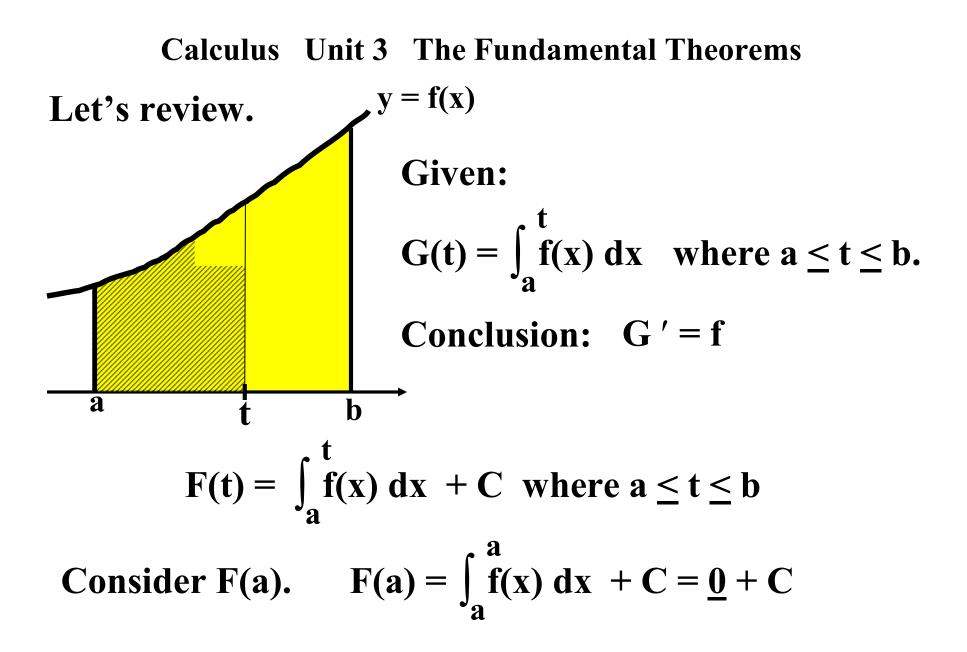
Consider F(a). F(a) =

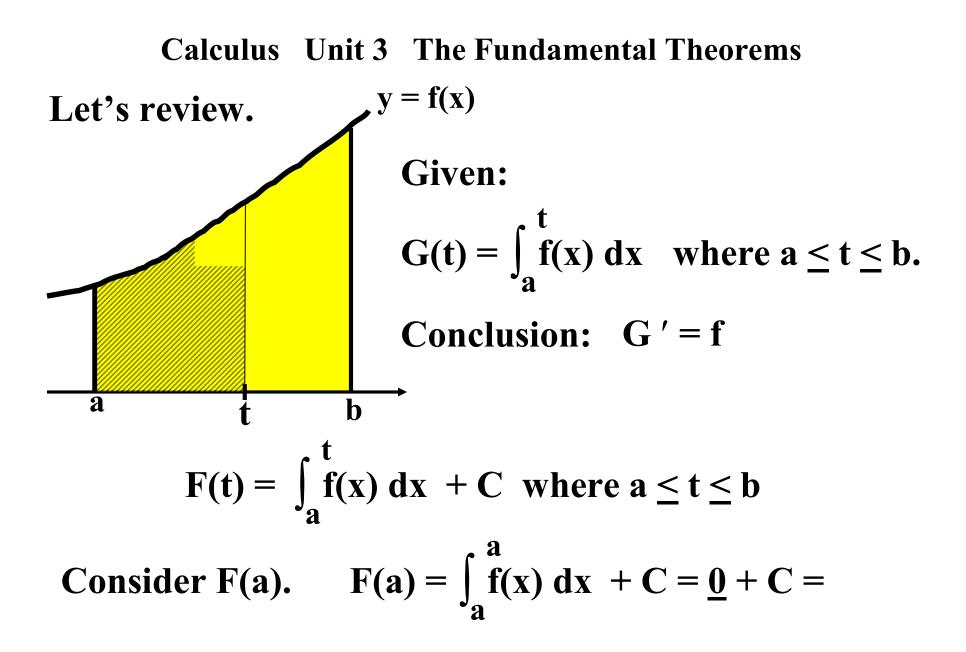


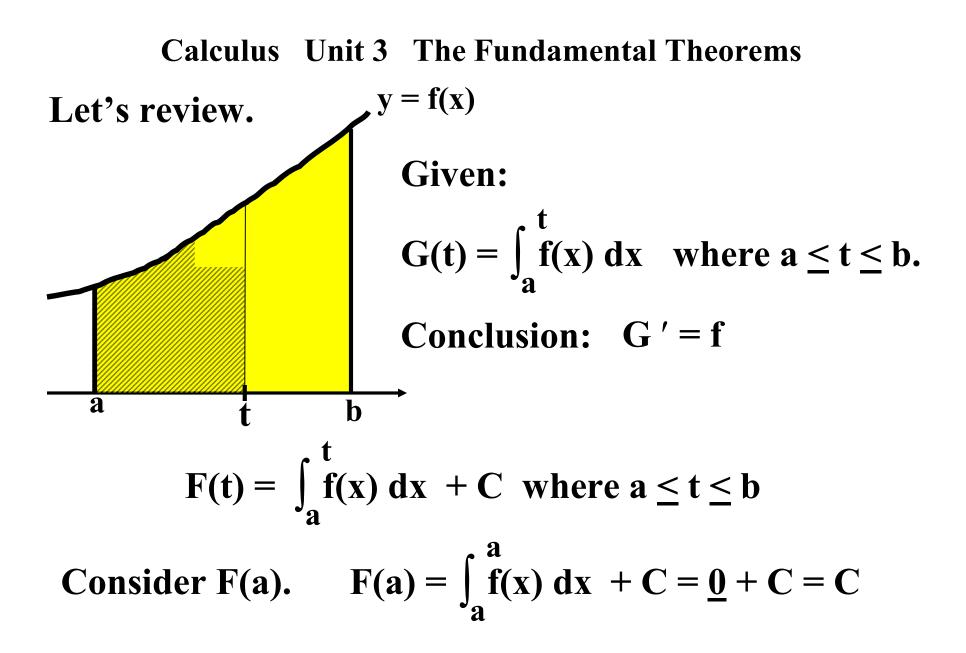


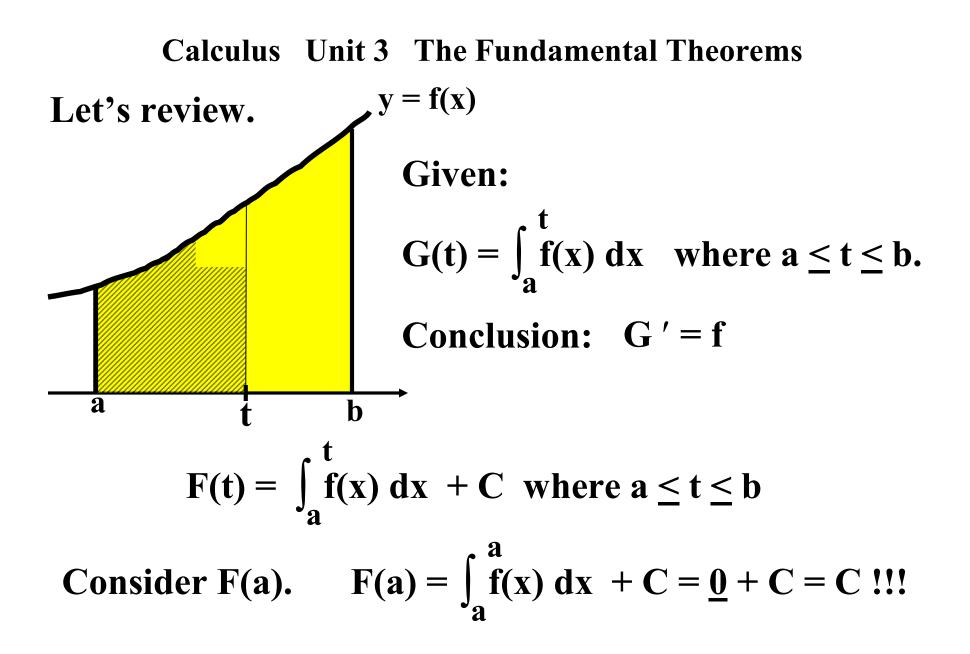


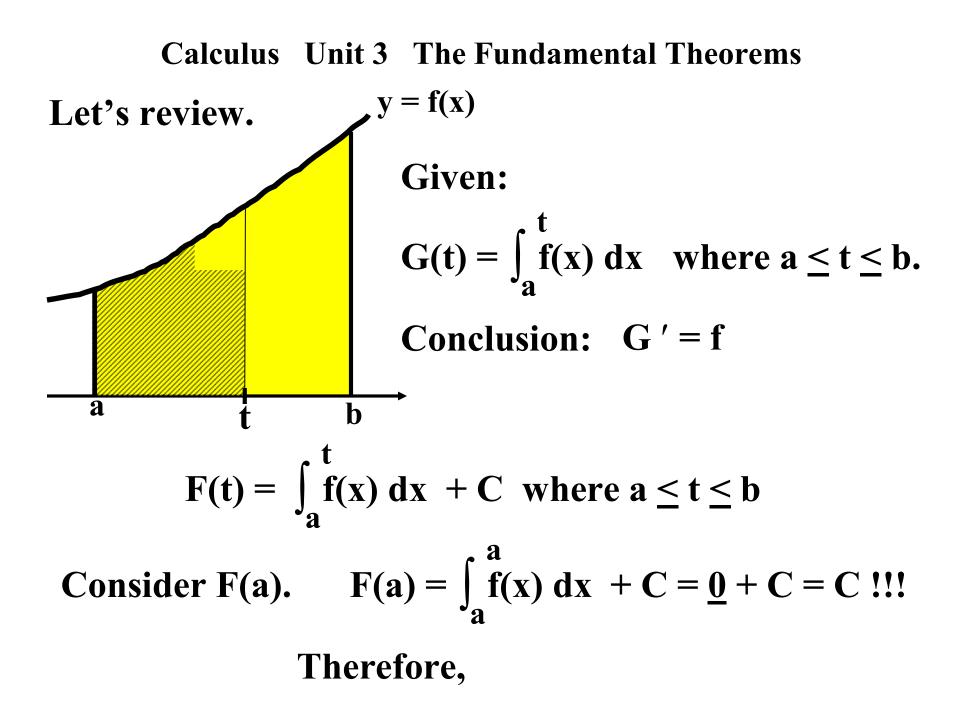


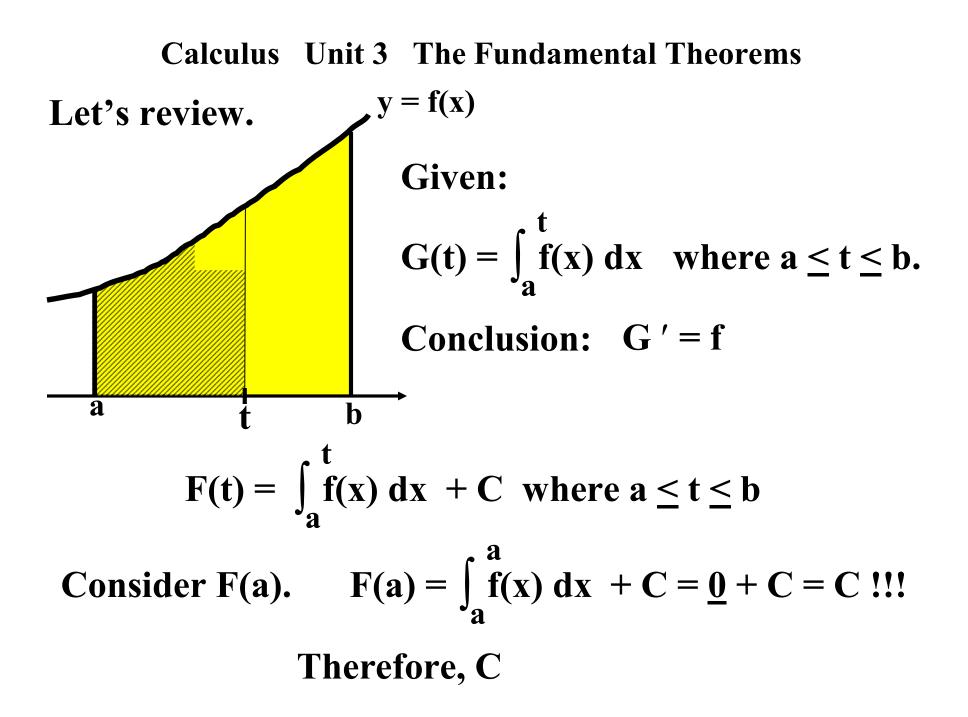


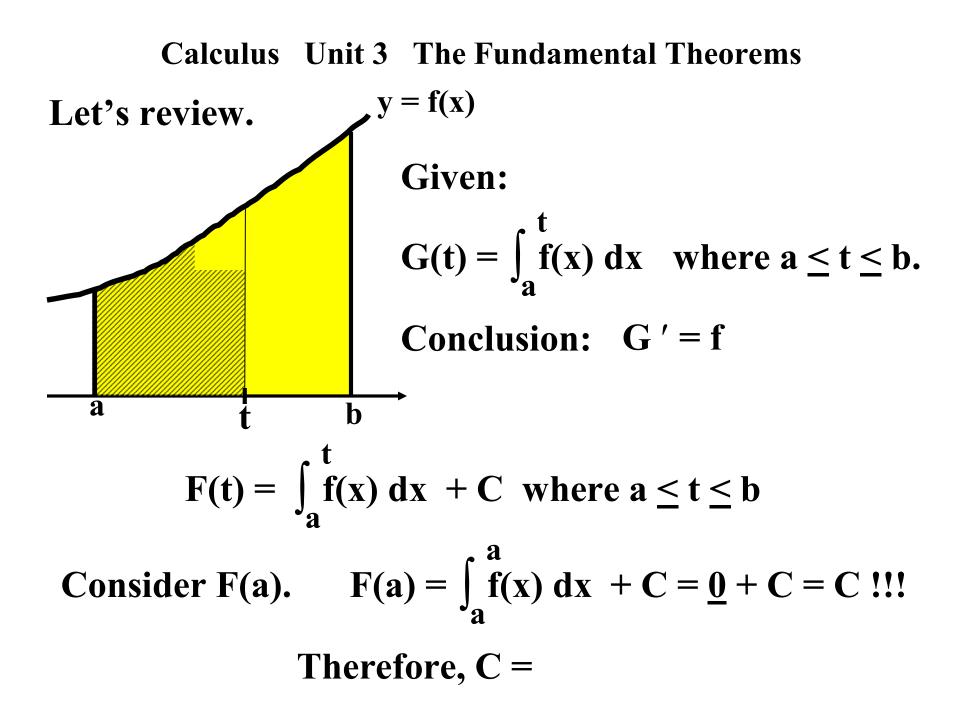


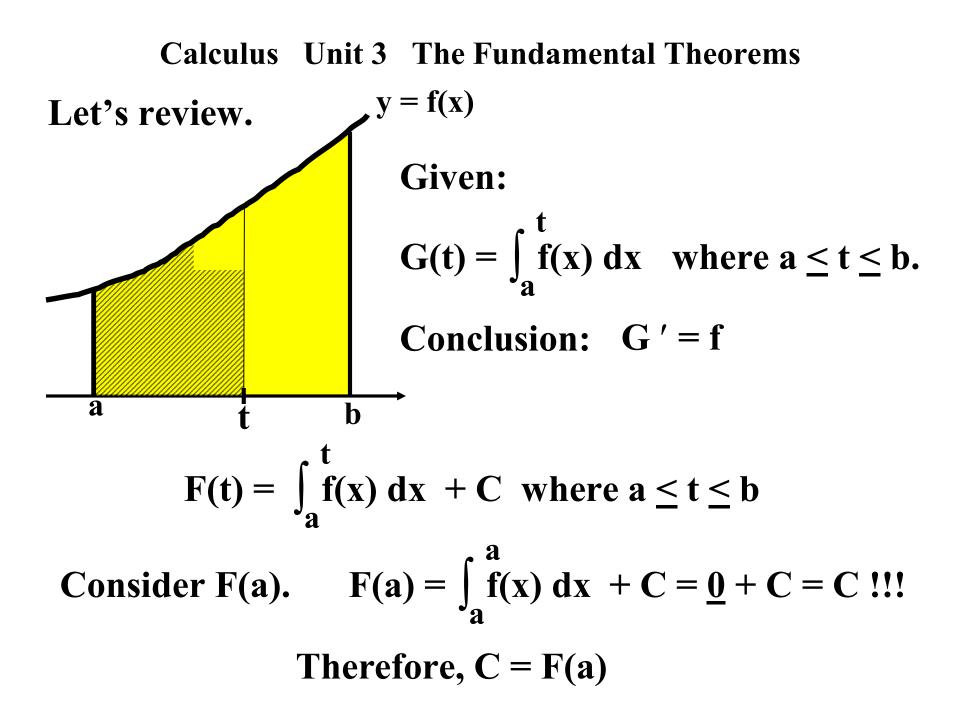


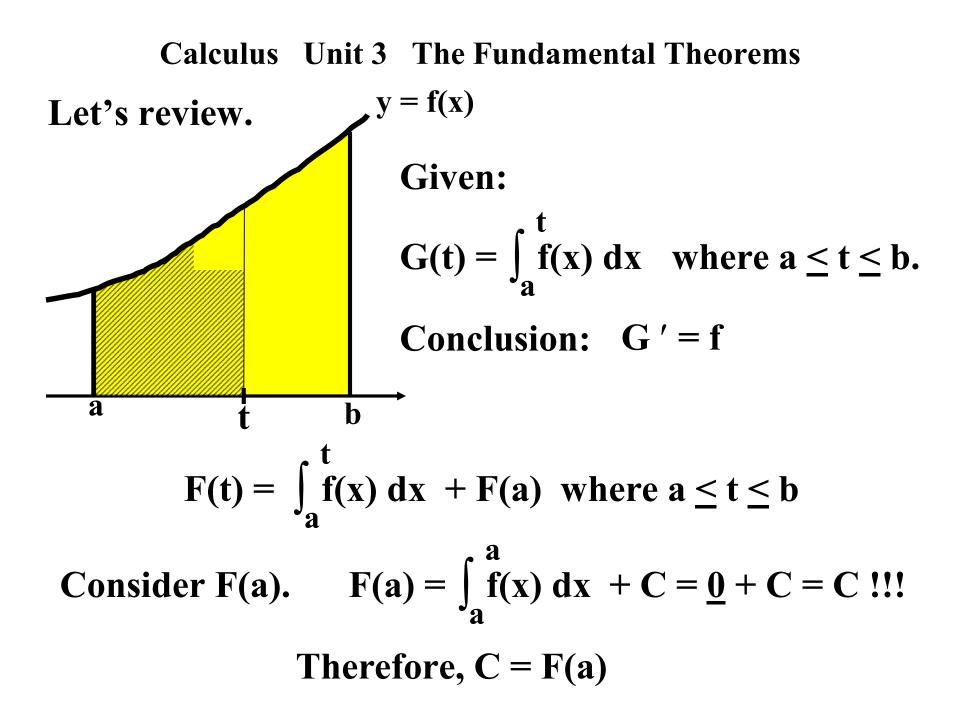


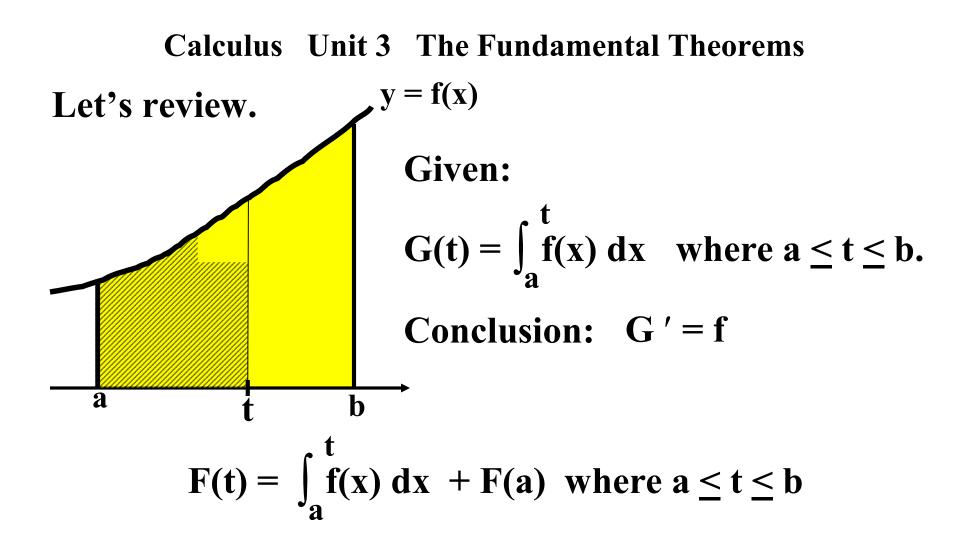






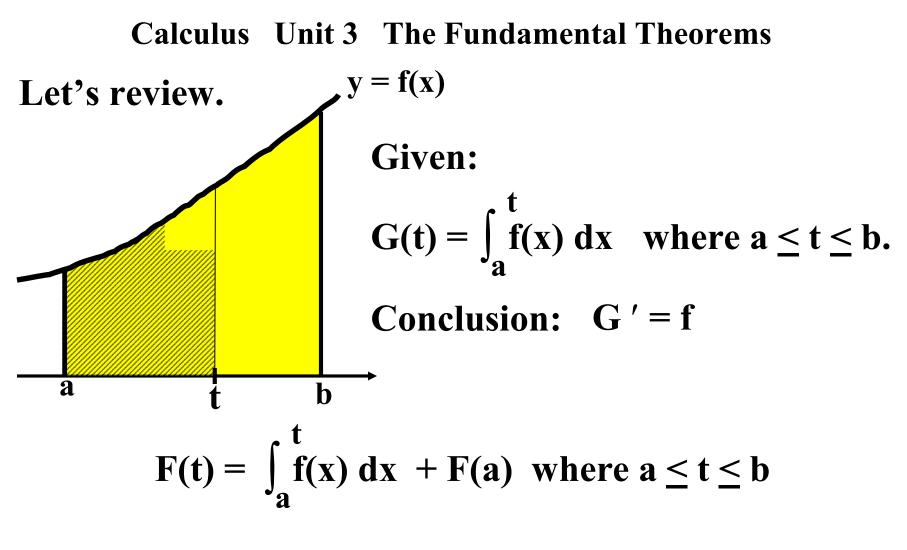




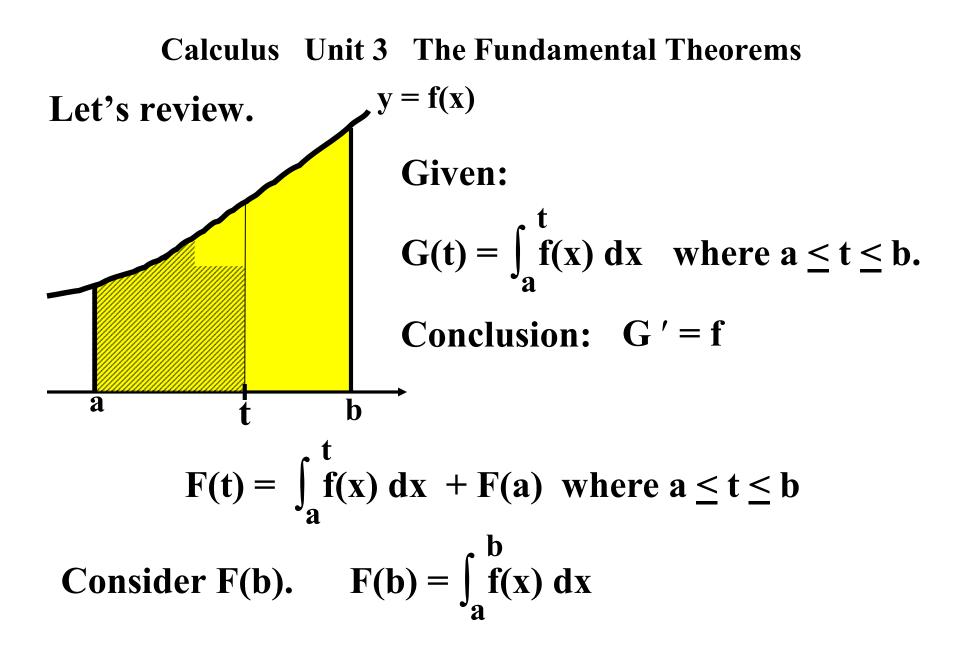


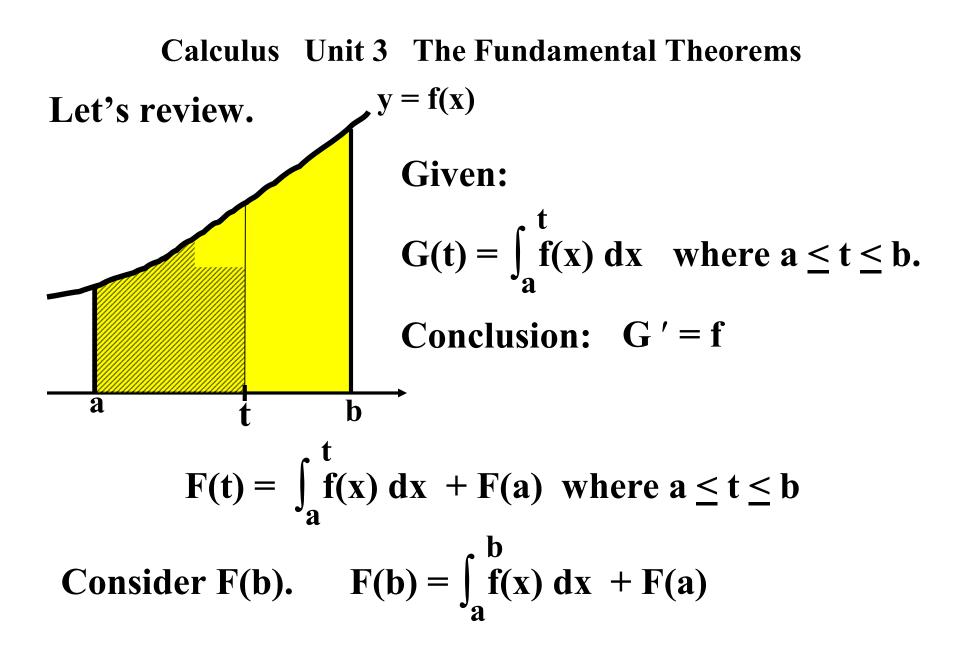


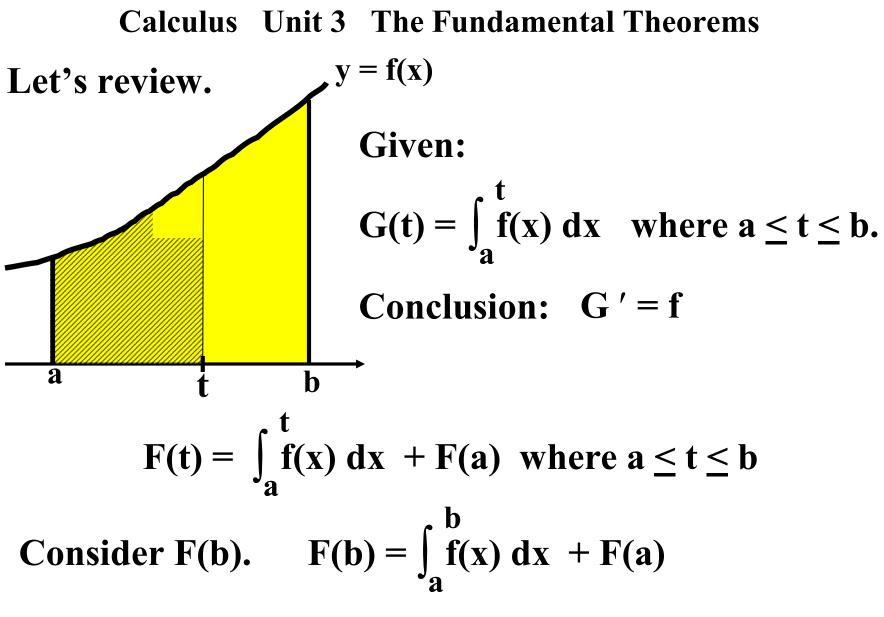
Consider F(b).



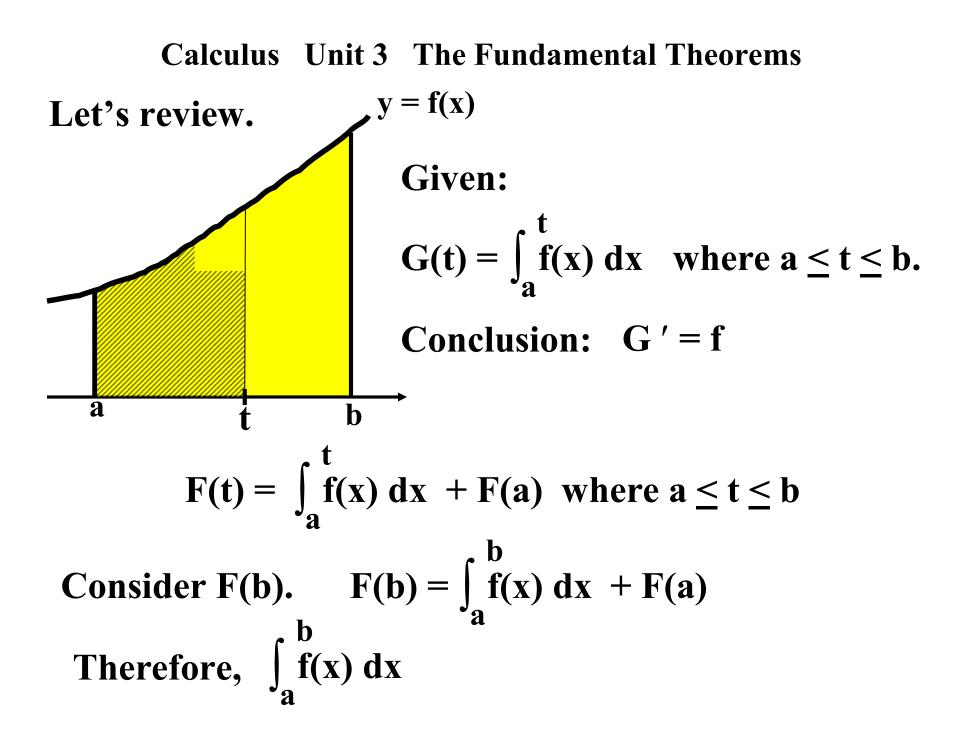
Consider F(b). F(b) =

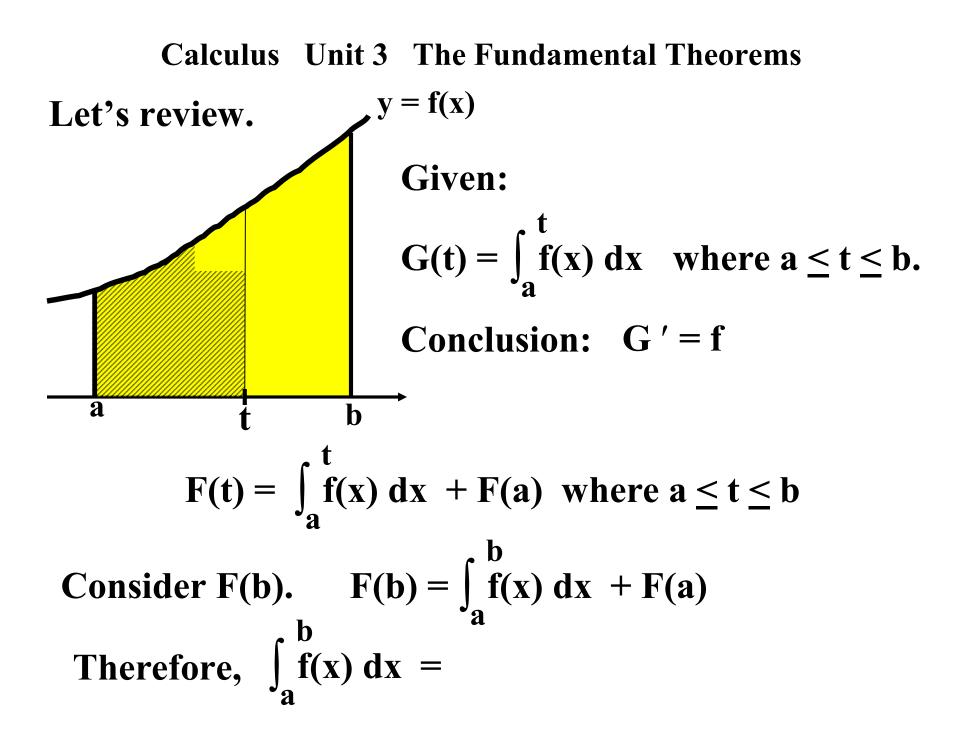


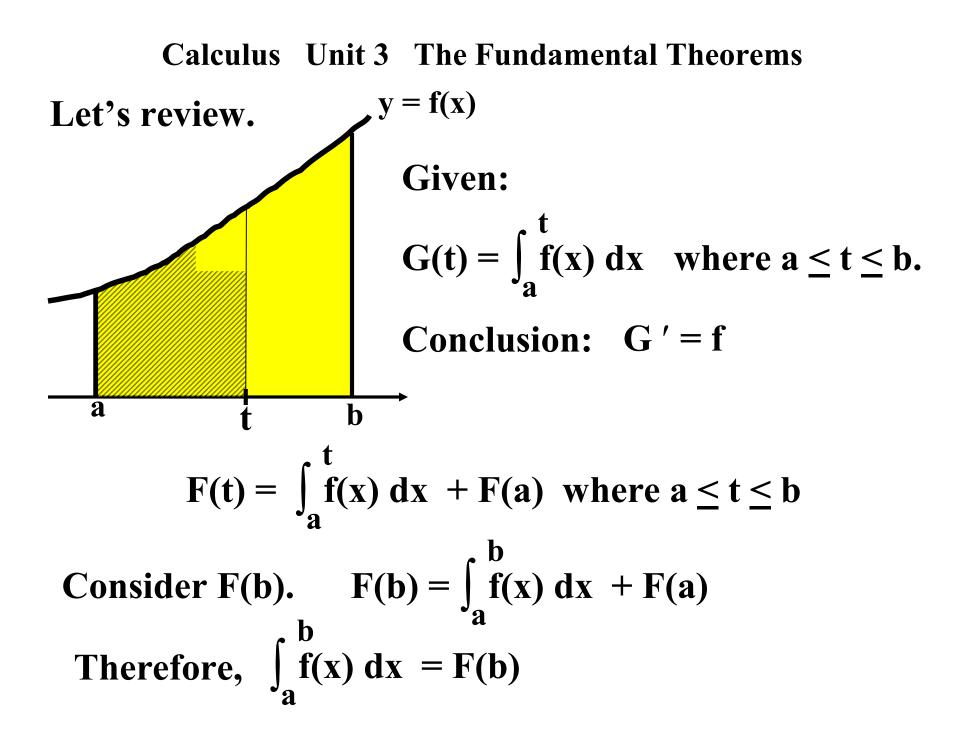


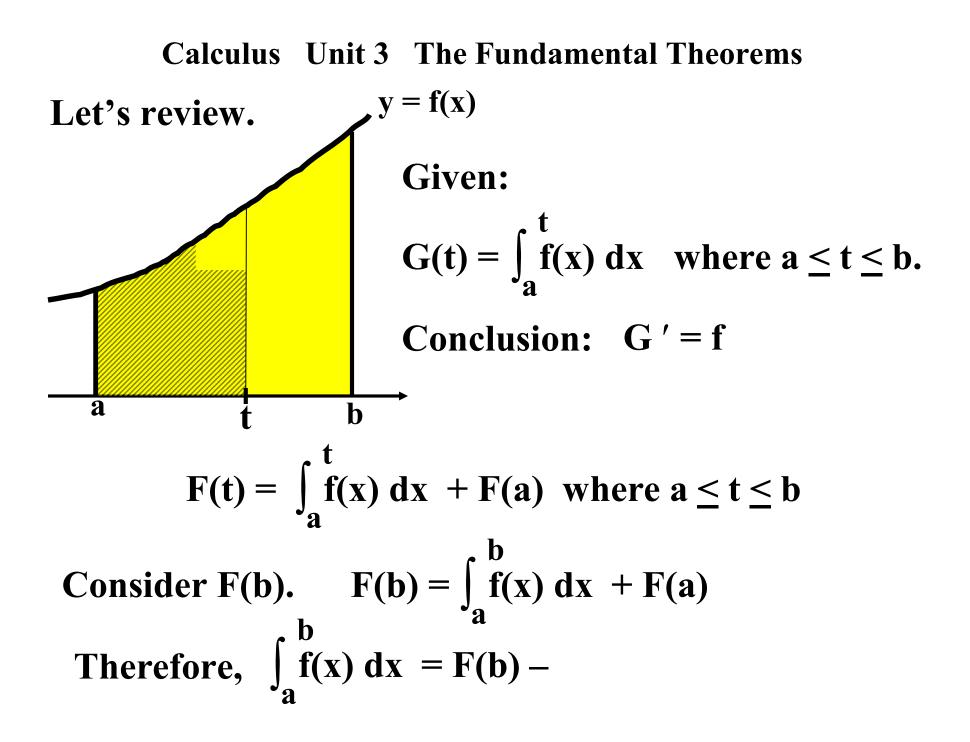


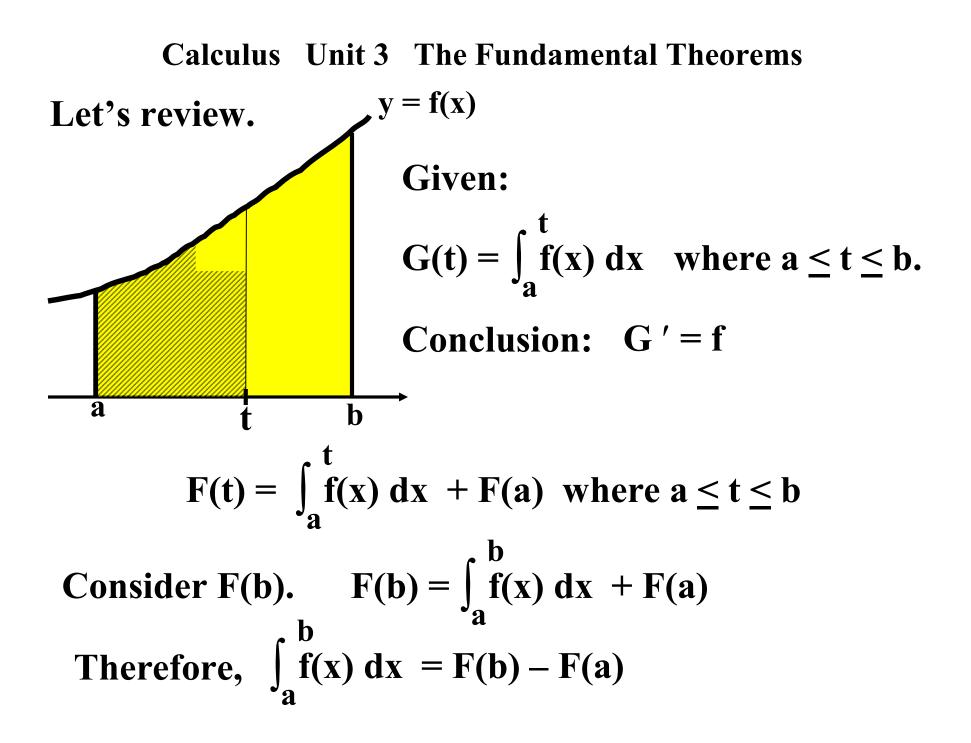
Therefore,

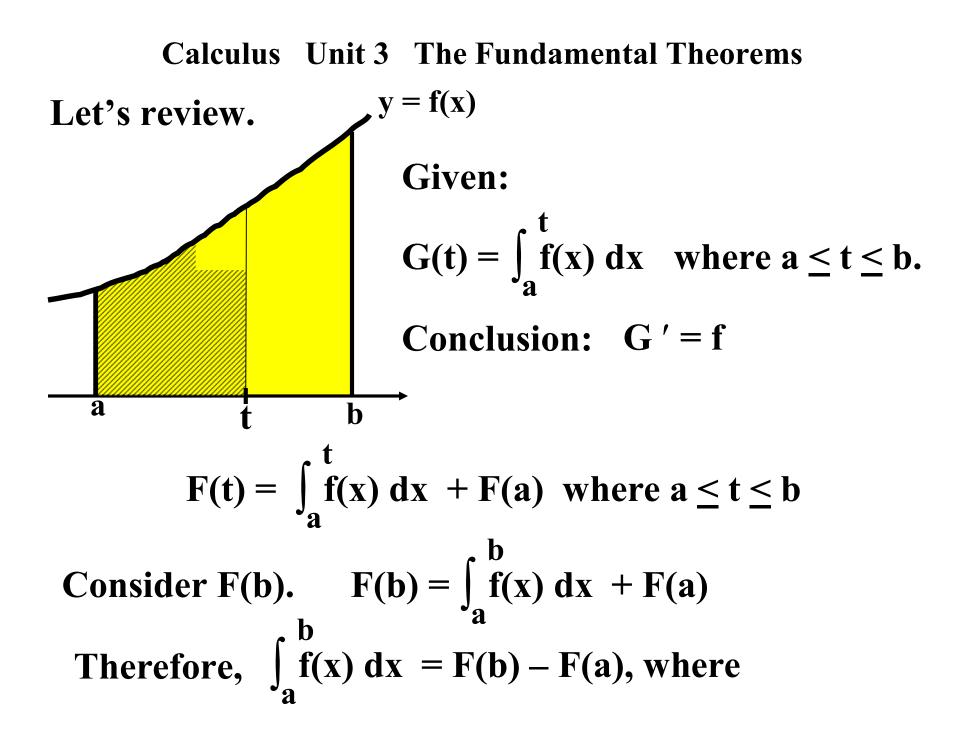


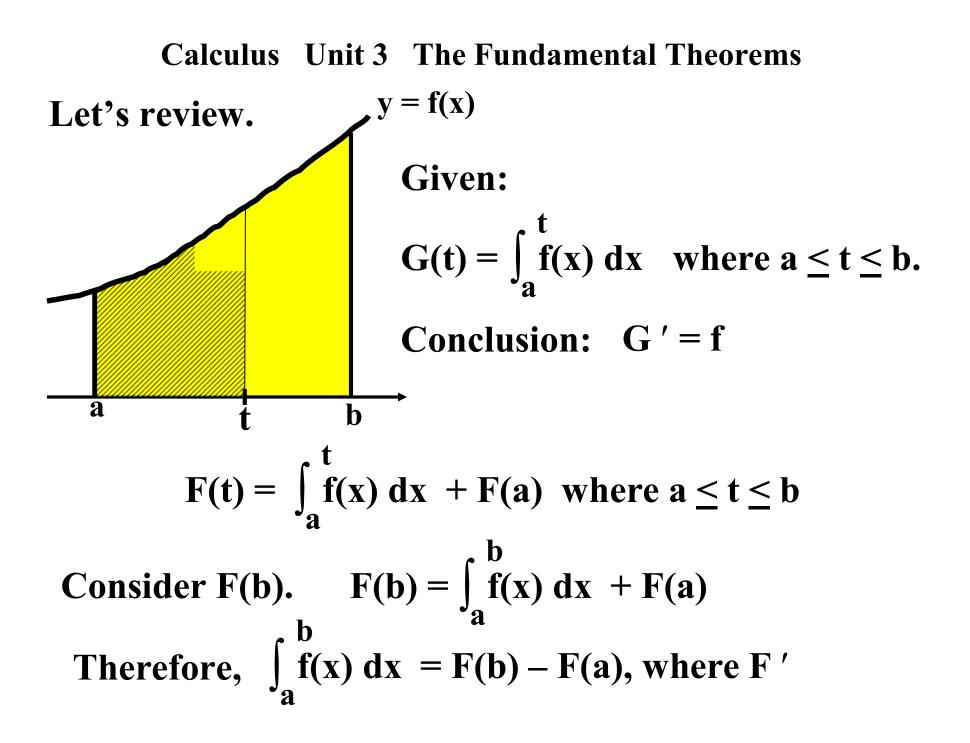


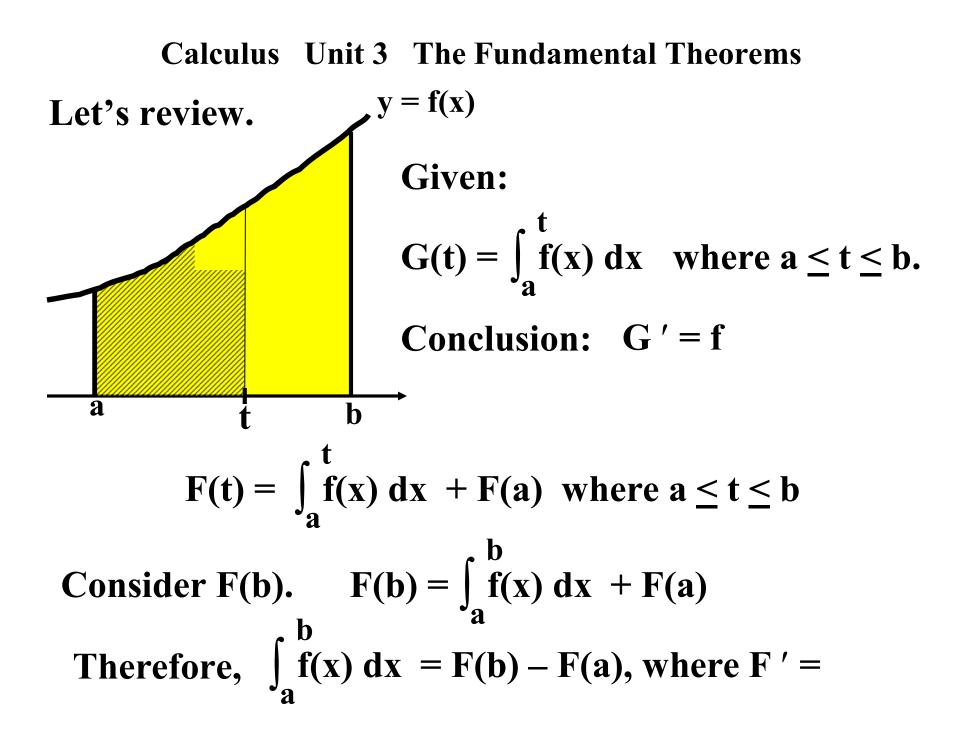


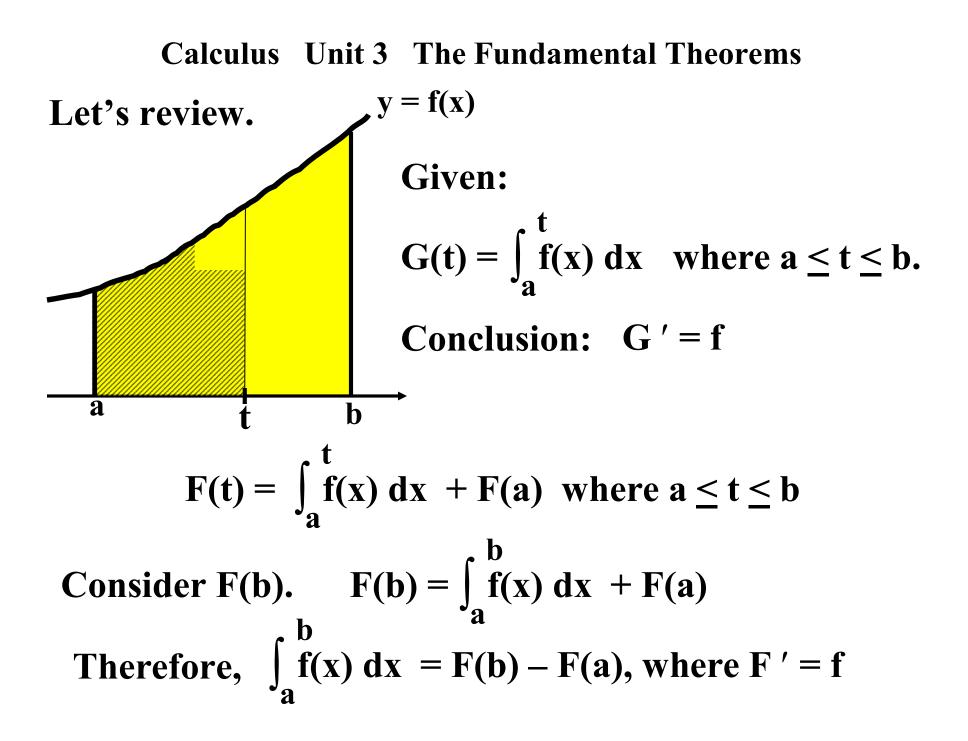


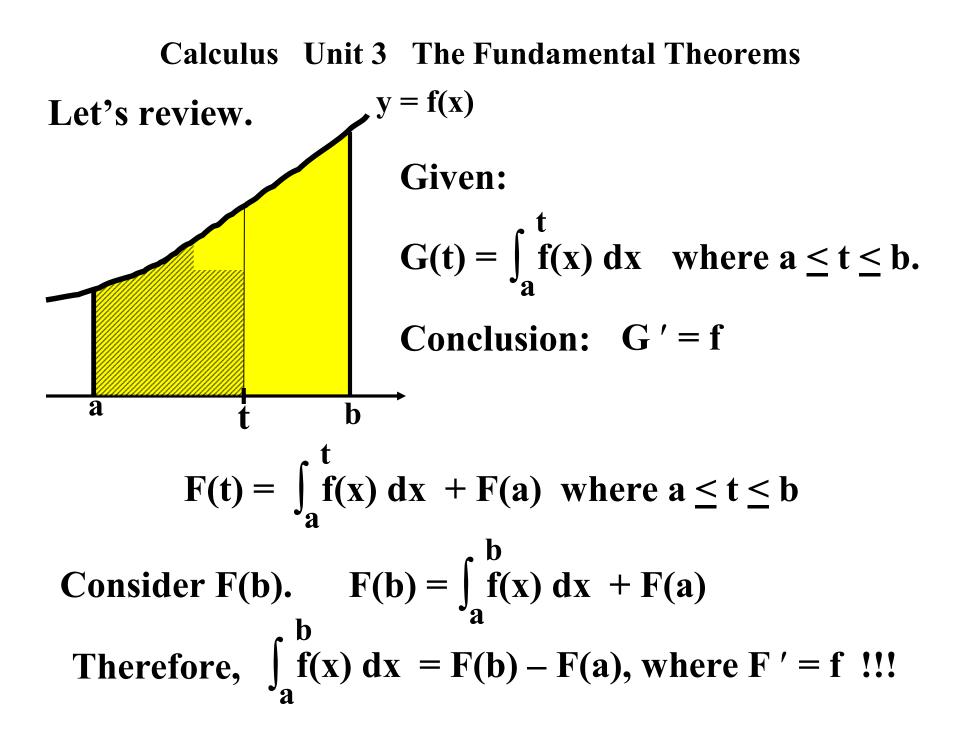


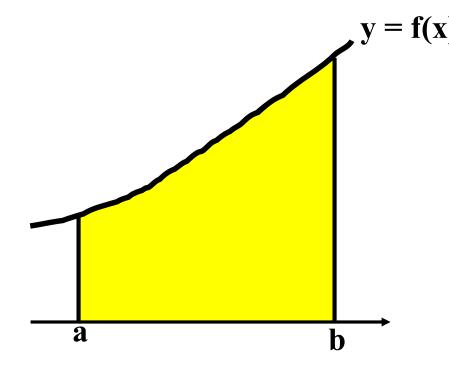




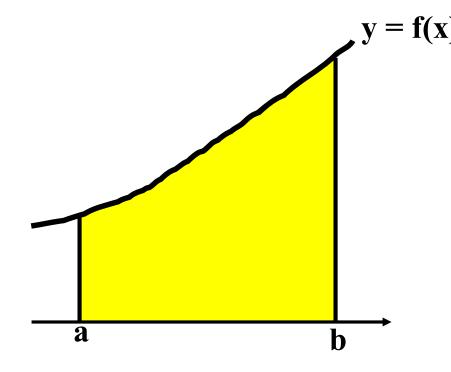






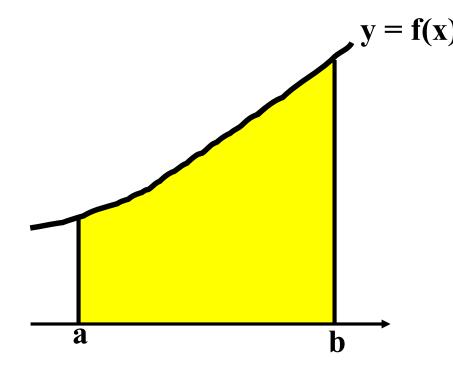


y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

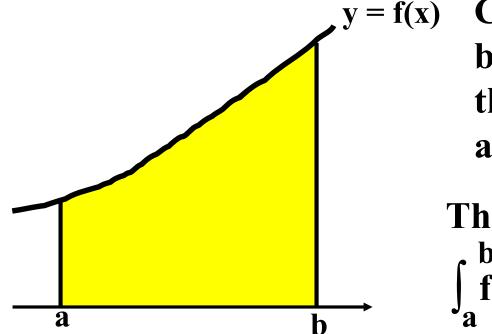
> The area of this region is $\int_{a}^{b} f(x) dx$.



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

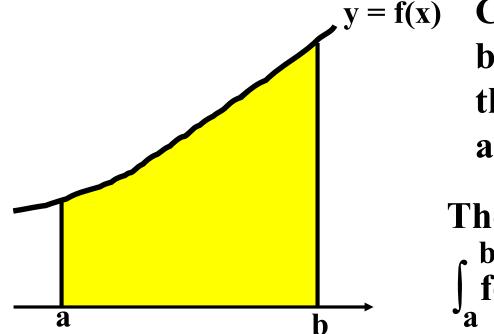
> The area of this region is $\int_{a}^{b} f(x) dx$.

Now comes the cool part !!



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

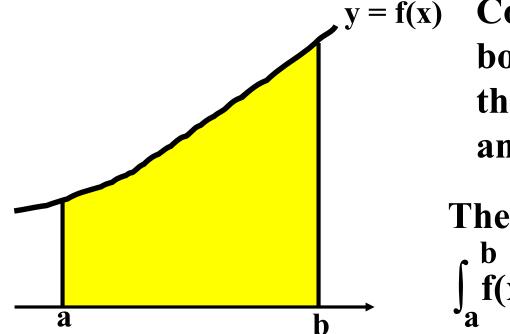
> The area of this region is $\int_{a}^{b} f(x) dx.$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx$.

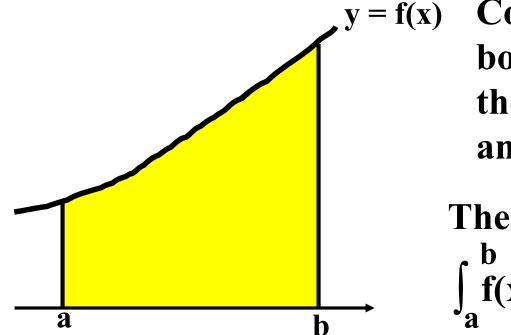
$$\int_{a}^{b} f(x) dx$$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx$.

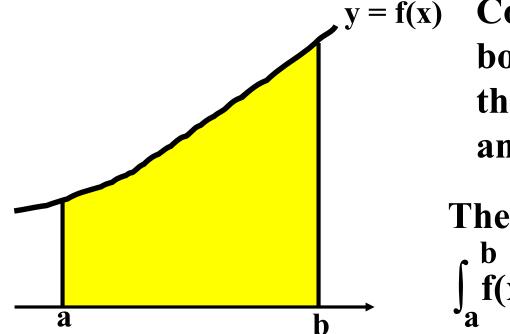
$$\int_{a}^{b} f(x) dx =$$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx$.

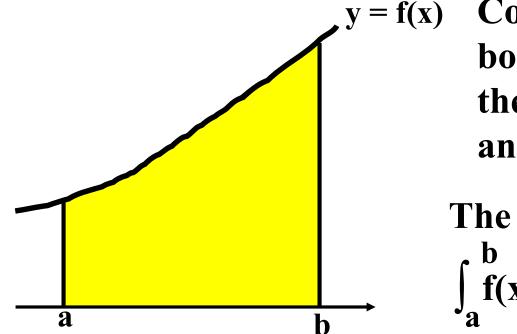
$$\int_{a}^{b} f(x) dx = F(b)$$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx$.

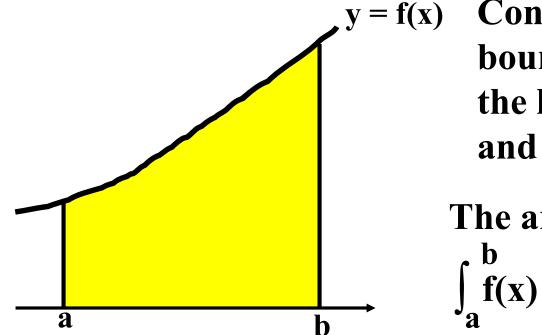
$$\int_a^b f(x) \, dx = F(b) -$$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx.$

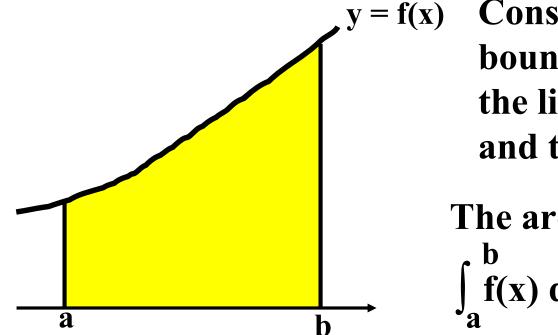
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx.$

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f$$



y = f(x) Consider the region bounded by the x-axis, the lines x = a and x = b, and the graph of y = f(x).

> The area of this region is $\int_{a}^{b} f(x) dx.$

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a), \text{ where } F' = f \, !!!$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

This is called the second fundamental theorem of calculus.

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

This is called the second fundamental theorem of calculus. To evaluate the <u>definite integral</u>,

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

This is called the second fundamental theorem of calculus. To evaluate the <u>definite integral</u>, you first must find an antiderivative function (F),

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

This is called the second fundamental theorem of calculus. To evaluate the <u>definite integral</u>, you first must find an antiderivative function (F), and then simply follow the 'rule' to evaluate it.

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

This is called the second fundamental theorem of calculus. To evaluate the <u>definite integral</u>, you first must find an antiderivative function (F), and then <u>simply</u> follow the 'rule' to evaluate it.

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F' = f.$$

This is called the second fundamental theorem of calculus. To evaluate the <u>definite integral</u>, you first must find an antiderivative function (F), and then <u>simply</u> follow the 'rule' to evaluate it.

Let's practice !!!