Calculus Lesson \#2 Unit 3

The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Define function \mathbf{G} as follows.
$G(t)=\int f(x) d x$

Calculus Unit 3 The Fundamental Theorems

Define function \mathbf{G} as follows.

$$
G(t)=\int_{\mathbf{a}} f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Define function \mathbf{G} as follows.

$$
G(t)=\int_{a}^{t} f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Define function \mathbf{G} as follows.

Clearly, $\mathbf{G}(\mathbf{t})$ represents the area of the region shown here.

Calculus Unit 3 The Fundamental Theorems

Define function \mathbf{G} as follows.

Clearly, $\mathbf{G}(\mathbf{t})$ represents the area of the region shown here.
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $G^{\prime}(t)!!$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 1:

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 1: Find $G(t+\Delta t)$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 1: Find $G(t+\Delta t)$

$\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})=$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 1: Find $G(t+\Delta t)$

$\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})=\int$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 1: Find $\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})$

$$
G(t+\Delta t)=\int f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 1: Find $\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})$

$$
G(t+\Delta t)=\int_{a} f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 1: Find $\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})$
 where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

$$
G(t+\Delta t)=\int_{a}^{t+\Delta t} \mathbf{f}(\mathbf{x}) d x
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!$!
Step 1: Find $\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})$

$$
G(t+\Delta t)=\int_{a}^{t+\Delta t} f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!$!
Step 1: Find $\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})$

$$
G(t+\Delta t)=\int_{a}^{t+\Delta t} f(x) d x
$$

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 1: Find $\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!$!
Step 2:

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!$!
Step 2: Subtract G(t).

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 2: Subtract G(t).

$\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})=$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 2: Subtract G(t).

$$
\begin{aligned}
& G(t)=\int_{a}^{t} f(x) d x \\
& \text { where } \mathbf{a} \leq \mathbf{t} \leq \mathbf{b} \text {. } \\
& G(t+\Delta t)=\int_{a}^{t+\Delta t} f(x) d x \\
& G(t+\Delta t)-G(t)=\int_{a}^{t+\Delta t} \mathbf{f}(\mathbf{x}) d x
\end{aligned}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 2: Subtract G(t).

$$
\begin{aligned}
& G(t)=\int_{a}^{t} f(x) d x \\
& \text { where } \mathbf{a} \leq \mathbf{t} \leq \mathbf{b} \text {. } \\
& G(t+\Delta t)=\int_{a}^{t+\Delta t} f(x) d x \\
& \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})=\int_{\mathbf{a}}^{\mathbf{t}+\Delta \mathbf{t}) d x-}
\end{aligned}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!$!
Step 2: Subtract G(t).

$$
\begin{aligned}
& G(t)=\int_{a}^{t} f(x) d x \\
& \text { where } \mathbf{a} \leq \mathbf{t} \leq \mathbf{b} \text {. } \\
& G(t+\Delta t)=\int_{a}^{t+\Delta t} f(x) d x \\
& G(t+\Delta t)-G(t)=\int_{a}^{t+\Delta t} f(x) d x-\int_{a}^{t} f(x) d x
\end{aligned}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 2: Subtract G(t).

$$
G(t)=\int_{a}^{t} f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 2: Subtract G(t).

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $G^{\prime}(t)!!$
Step 2: Subtract G(t).

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.
$\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $G^{\prime}(t)!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $G^{\prime}(t)!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $G^{\prime}(t)!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3:

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δt.

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δ t.

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

$$
\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t} \leq \frac{\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δ t.

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

$$
\frac{\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}} \leq \frac{\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δt.

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

$$
\frac{\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}} \leq \frac{\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δt.

$G(t)=\int_{a}^{t} f(x) d x$
where $a \leq t \leq b$.

$$
\frac{\mathbf{f}(\mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}} \leq \frac{\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δt.

$$
\mathbf{f}(\mathbf{t}) \leq \frac{\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t}) \cdot \Delta \mathbf{t}}{\Delta \mathbf{t}}
$$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δt.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 3: Divide by Δt.

$G(t)=\int_{a}^{t} f(x) d x$
where $\mathbf{a} \leq \mathbf{t} \leq \mathbf{b}$.

$$
\mathbf{f}(\mathbf{t}) \leq \frac{\mathbf{G}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{G}(\mathbf{t})}{\Delta \mathbf{t}} \leq \mathbf{f}(\mathbf{t}+\Delta \mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4:

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4: Evaluate the limit as $\Delta t \rightarrow \mathbf{0}$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems

Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$
Step 4: Evaluate the limit as $\Delta t \rightarrow 0$.

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$$
\mathbf{f}(\mathbf{t}) \leq \mathbf{G}^{\prime}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t})
$$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})!!$

$\mathbf{f}(\mathbf{t}) \leq \mathbf{G}^{\prime}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}) \Rightarrow$

Calculus Unit 3 The Fundamental Theorems
Our objective is to find $\mathbf{G}^{\prime}(\mathbf{t})$!!

$$
\mathbf{f}(\mathbf{t}) \leq \mathbf{G}^{\prime}(\mathbf{t}) \leq \mathbf{f}(\mathbf{t}) \Longrightarrow \mathbf{G}^{\prime}(\mathbf{t})=\mathbf{f}(\mathbf{t})!!!
$$

Calculus Unit 3 The Fundamental Theorems

Let's review.

Calculus Unit 3 The Fundamental Theorems

Conclusion:

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathrm{G}^{\prime}=$

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Given:

$G(t)=\int_{a}^{t} \mathbf{f}(x) d x \quad$ where $a \leq t \leq b$.
Conclusion: $G^{\prime}=\mathbf{f}$

This is called the first fundamental theorem of calculus.

Calculus Unit 3 The Fundamental Theorems

Given:

$G(t)=\int_{a}^{t} \mathbf{f}(x) d x \quad$ where $a \leq t \leq b$.
Conclusion: $G^{\prime}=\mathbf{f}$

This is called the first fundamental theorem of calculus. Since G is a function whose derivative is f,

Calculus Unit 3 The Fundamental Theorems

Given:

$G(t)=\int_{a}^{t} \mathbf{f}(x) d x \quad$ where $a \leq t \leq b$.
Conclusion: $G^{\prime}=\mathbf{f}$

This is called the first fundamental theorem of calculus. Since G is a function whose derivative is f, it is called an antiderivative of f.

Calculus Unit 3 The Fundamental Theorems

Given:
$G(t)=\int_{a}^{t} \mathbf{f}(x) d x \quad$ where $a \leq t \leq b$.
Conclusion: $\quad G^{\prime}=\mathbf{f}$

This is called the first fundamental theorem of calculus. Since G is a function whose derivative is f, it is called an antiderivative of f.

The process of 'finding' an antiderivative function is called integration.

Calculus Unit 3 The Fundamental Theorems

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

Let $\mathrm{F}^{\text {represent }}$ any other function such that $\mathrm{F}^{\prime}=\mathbf{f}$.

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

Let F represent any other function such that $\mathrm{F}^{\prime}=\mathbf{f}$.
'Clearly', $\mathbf{F}(\mathbf{t})=\mathbf{G}(\mathbf{t})+\mathbf{C}$ for some constant \mathbf{C}.

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

'Clearly', $F(t)=\mathbf{G}(\mathbf{t})+\mathbf{C}$ for some constant \mathbf{C}.
Therefore, $F(t)=\int_{a}^{t} f(x) d x+C$ where $a \leq t \leq b$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

Let F represent any other function such that $\mathrm{F}^{\prime}=\mathbf{f}$.
'Clearly', $F(t)=\mathbf{G}(\mathbf{t})+\mathbf{C}$ for some constant \mathbf{C}.
Therefore, $F(t)=\int_{a}^{t} f(x) d x+C$ where $a \leq t \leq b$
Make sure you get this !!

Calculus Unit 3 The Fundamental Theorems

Given:

$G(t)=\int_{a}^{t} f(x) d x \quad$ where $a \leq t \leq b$.
Conclusion: $G^{\prime}=\mathbf{f}$

Let F represent any other function such that $\mathrm{F}^{\prime}=\mathbf{f}$.
'Clearly', $\mathbf{F}(\mathbf{t})=\mathbf{G}(\mathbf{t})+\mathbf{C}$ for some constant \mathbf{C}.
Therefore, $F(t)=\int_{a}^{t} f(x) d x+C$ where $a \leq t \leq b$
Make sure you get this !! Remember, \mathbf{C} is a constant.

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

Consider F(a).

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\quad \mathbf{G}^{\prime}=\mathbf{f}$

Consider F(a). \quad F(a) $=$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider F(a). $\quad F(a)=\int_{a}^{a} f(x) d x$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $F(a) . \quad F(a)=\int_{a}^{a} f(x) d x+C$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $F(a) . \quad F(a)=\int_{a}^{a} f(x) d x+C=$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $F(a) . \quad F(a)=\int_{a}^{a} f(x) d x+C=\underline{0}$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $F(a) . \quad F(a)=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathbf{d x}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $F(a) . \quad F(a)=\int_{a}^{a} f(x) d x+C=\underline{0}+C=$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathbf{d x}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathrm{dx}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}!!!$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathrm{dx}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}!!!$
Therefore,

Calculus Unit 3 The Fundamental Theorems

 Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathrm{dx}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}!!!$
Therefore, C

Calculus Unit 3 The Fundamental Theorems
 Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathbf{d x}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}!!!$
Therefore, $\mathrm{C}=$

Calculus Unit 3 The Fundamental Theorems

 Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+C \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathrm{dx}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}!!!$
Therefore, $C=F(a)$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(\mathbf{a}) . \quad \mathbf{F}(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathbf{d x}+\mathbf{C}=\underline{\mathbf{0}}+\mathbf{C}=\mathbf{C}!!!$
Therefore, $\mathbf{C}=\mathbf{F}(\mathbf{a})$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} \mathbf{f}(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider F(b).

Calculus Unit 3 The Fundamental Theorems

Conclusion: $\mathbf{G}^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{\mathbf{t}} \mathbf{f}(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $\mathbf{F}(b) . \quad \mathbf{F}(b)=$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider F(b). $\quad F(b)=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}+\mathbf{F}(\mathbf{a})$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider F(b). $\quad F(b)=\int_{a}^{b} f(x) d x+F(a)$
Therefore,

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{\mathbf{a}}^{b} f(x) d x+F(a)$
Therefore, $\int_{a}^{\mathbf{b}} \mathbf{f}(x) d x$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{a}^{b} f(x) d x+F(a)$
Therefore, $\int_{a}^{b} f(x) d x=$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{a}^{b} f(x) d x+F(a)$
Therefore, $\int_{a}^{b} f(x) d x=F(b)$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{a}^{b} f(x) d x+F(a)$
Therefore, $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})$ -

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider F(b). $\quad F(b)=\int_{a}^{b} f(x) d x+F(a)$
Therefore, $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) \mathbf{d x}=\mathbf{F}(b)-F(a)$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{\mathbf{a}}^{b} f(x) d x+F(a)$
Therefore, $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=F(b)-F(a)$, where

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{a}^{b} f(x) d x+F(a)$
Therefore, $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathrm{b})-F(\mathbf{a})$, where F^{\prime}

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{\mathbf{a}}^{b} f(x) d x+F(a)$
Therefore, $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(b)-F(a)$, where $F^{\prime}=$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider $F(b) . \quad F(b)=\int_{\mathbf{a}}^{b} f(x) d x+F(a)$
Therefore, $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where $F^{\prime}=f$

Calculus Unit 3 The Fundamental Theorems

Conclusion: $G^{\prime}=\mathbf{f}$

$$
F(t)=\int_{a}^{t} f(x) d x+F(a) \text { where } a \leq t \leq b
$$

Consider F(b). $\quad F(b)=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}+F(\mathbf{a})$
Therefore, $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(b)-F(a)$, where $F^{\prime}=\mathbf{f}!!!$

Calculus Unit 3 The Fundamental Theorems

Let's review.

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the cool part !!

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{a}^{b} f(x) d x
$$

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) d x=
$$

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{a}^{b} f(x) d x=F(b)
$$

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{a}^{b} \mathbf{f}(x) d x=F(b)-
$$

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) d x=F(b)-F(a)
$$

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) d x=F(b)-F(a), \text { where } F^{\prime}=\mathbf{f}
$$

Calculus Unit 3 The Fundamental Theorems

Let's review (again).

The area of this region is $\int_{a}^{b} f(x) d x$.

Now comes the really cool part !!

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})-\mathbf{F}(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}!!!
$$

Calculus Unit 3 The Fundamental Theorems

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})-\mathbf{F}(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}
$$

Calculus Unit 3 The Fundamental Theorems

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})-\mathbf{F}(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}
$$

This is called the second fundamental theorem of calculus.

$$
\begin{aligned}
& \text { Calculus Unit } 3 \text { The Fundamental Theorems } \\
& \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})-\mathbf{F}(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}
\end{aligned}
$$

This is called the second fundamental theorem of calculus. To evaluate the definite integral,

$$
\begin{aligned}
& \text { Calculus Unit } 3 \text { The Fundamental Theorems } \\
& \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})-\mathbf{F}(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}
\end{aligned}
$$

This is called the second fundamental theorem of calculus. To evaluate the definite integral, you first must find an antiderivative function (F),

$$
\begin{aligned}
& \text { Calculus Unit } 3 \text { The Fundamental Theorems } \\
& \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=F(b)-F(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}
\end{aligned}
$$

This is called the second fundamental theorem of calculus. To evaluate the definite integral, you first must find an antiderivative function (F), and then simply follow the 'rule' to evaluate it.

$$
\begin{aligned}
& \text { Calculus Unit } 3 \text { The Fundamental Theorems } \\
& \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=F(b)-F(\mathbf{a}) \text {, where } F^{\prime}=\mathbf{f}
\end{aligned}
$$

This is called the second fundamental theorem of calculus. To evaluate the definite integral, you first must find an antiderivative function (F), and then simply follow the 'rule' to evaluate it.

Calculus Unit 3 The Fundamental Theorems

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{F}(\mathbf{b})-F(\mathbf{a}), \text { where } F^{\prime}=\mathbf{f}
$$

This is called the second fundamental theorem of calculus. To evaluate the definite integral, you first must find an antiderivative function (F), and then simply follow the 'rule' to evaluate it.

Let's practice !!!

