Calculus Lesson \#1 Unit 3

Rectangular Approximations

Calculus Unit 3 Rectangular Approximations

Divide the interval $[a, b]$ into n subintervals each of width Δx by the numbers

$$
\mathbf{a}=\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}=\mathbf{b}
$$

 Divide the interval $[a, b]$ into n subintervals each of width Δx by the numbers

$$
\mathbf{a}=\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}=\mathbf{b}
$$

Clearly $\Delta x=\frac{\mathbf{b}-\mathbf{a}}{\mathbf{n}}$

The Lower Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}
\end{aligned}
$$

The Lower Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=f\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\text { Calculus Unit } 3 \text { Rectangular Approximations }
$$

$$
\text { Calculus Unit } 3 \text { Rectangular Approximations }
$$

$$
\text { Calculus Unit } 3 \text { Rectangular Approximations }
$$

$$
\text { Calculus Unit } 3 \text { Rectangular Approximations }
$$

\uparrow Calculus Unit 3 Rectangular Approximations

The Lower Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
S_{L}=f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta x+f\left(\mathbf{x}_{2}\right) \Delta x+f\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
$$

The Lower Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{L}}=\mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
$$

In general,

In general, $\mathbf{S}_{\mathbf{L}}=$

The Lower Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{\mathbf{2}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{\mathbf{3}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{L}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right) \Delta \mathbf{x}
$$

In general, $\mathrm{S}_{\mathrm{L}}=\sum_{\mathrm{i}=1}^{\mathrm{n}}$

The Lower Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{L}}=\mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
$$

In general, $S_{L}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$

Calculus Unit 3 Rectangular Approximations

The Upper Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{1}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{\mathbf{2}}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{\mathbf{3}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right) \Delta \mathbf{x}
\end{aligned}
$$

Calculus Unit 3 Rectangular Approximations

The Upper Rectangular Sum

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{U}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+
$$

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{\mathbf{2}}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{U}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
$$

$$
\mathbf{S}_{\mathrm{U}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
$$

In general,

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{U}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
$$

In general, $\mathbf{S}_{\mathbf{U}}=$

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{U}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
$$

In general, $S_{U}=\sum_{i=1}^{n}$

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{U}}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
$$

In general, $S_{U}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta \mathbf{x}$

The Midpoint Rectangular Sum

The Midpoint Rectangular Sum
Let $\mathrm{x}_{\mathrm{i}}^{\boldsymbol{*}}$ represent the midpoint of the $i^{\text {th }}$ sub-interval.

The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $i^{\text {th }}$ sub-interval.

The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $i^{\text {th }}$ sub-interval.

The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $i^{\text {th }}$ sub-interval.

$$
\mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}^{*}\right) \Delta \mathbf{x}
$$

The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $i^{\text {th }}$ sub-interval.

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}^{*}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}^{*}\right) \Delta \mathbf{x}
\end{aligned}
$$

Calculus Unit 3 Rectangular Approximations

The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $i^{\text {th }}$ sub-interval.

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{1}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{1}}^{*}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}^{*}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{\mathbf{3}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}^{*}\right) \Delta \mathbf{x}
\end{aligned}
$$

The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $i^{\text {th }}$ sub-interval.

$$
\begin{aligned}
\mathbf{A}_{1} & =\mathbf{f}\left(\mathbf{x}_{1}^{*}\right) \Delta \mathbf{x} \\
\mathbf{A}_{2} & =\mathbf{f}\left(\mathbf{x}_{2}^{*}\right) \Delta \mathbf{x} \\
\mathbf{A}_{3} & =\mathbf{f}\left(\mathbf{x}_{3}^{*}\right) \Delta \mathbf{x} \\
\mathbf{A}_{4} & =\mathbf{f}\left(\mathbf{x}_{4}^{*}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\text { Calculus Unit } 3 \text { Rectangular Approximations }
$$

$$
\text { Calculus Unit } 3 \text { Rectangular Approximations }
$$

In general,
Calculus Unit 3 Rectangular Approximations
The Midpoint Rectangular Sum
Let x_{i}^{*} represent the midpoint of the $\mathbf{i}^{\text {th }}$ sub-interval.

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}^{*}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{2}=\mathbf{f}\left(\mathbf{x}_{2}^{*}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}^{*}\right) \Delta \mathbf{x} \\
& \mathbf{A}_{4}=\mathbf{f}\left(\mathbf{x}_{4}^{*}\right) \Delta \mathbf{x}
\end{aligned}
$$

$$
\mathbf{S}_{\mathbf{M}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{1}}^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{4}}^{*}\right) \Delta \mathbf{x}
$$

In general, $\mathrm{S}_{\mathrm{M}}=$

$$
\begin{aligned}
& \begin{array}{ll}
\text { Calculus Unit } 3 & \text { Rectangular Approximations } \\
\qquad \begin{array}{l}
\mathbf{y}=\mathbf{f}(\mathbf{x}) \\
\text { The Midpoint Rectangular Sum }
\end{array}
\end{array} \\
& \text { Let } x_{i}^{*} \text { represent the midpoint } \\
& \text { of the } i^{\text {th }} \text { sub-interval. } \\
& \mathrm{A}_{1}=\mathbf{f}\left(\mathbf{x}_{1}^{*}\right) \Delta \mathbf{x} \\
& A_{2}=f\left(\mathbf{x}_{2}^{*}\right) \Delta x \\
& \mathbf{A}_{3}=\mathbf{f}\left(\mathbf{x}_{3}^{*}\right) \Delta \mathbf{x} \\
& \mathrm{A}_{4}=\mathrm{f}\left(\mathrm{x}_{4}^{*}\right) \Delta \mathrm{x} \\
& S_{M}=\mathbf{f}\left(\mathbf{x}_{\mathbf{1}}^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{\mathbf{4}}^{*}\right) \Delta \mathbf{x} \\
& \text { In general, } S_{M}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
\end{aligned}
$$

Calculus Lesson \#2 Unit 3

The Fundamental Theorems

