Calculus Worksheet \#6 Unit 2 page 1 Selected Solutions

Solve the following problems. Show your work neatly organized in the space provided. Express irrational solutions rounded to three significant digits.

1. A rectangular box with a square base is to have a capacity of $\mathbf{1 0 0}$ cubic feet. If the material for the top costs $\$ 1.40$ per square foot, the material for the sides cost $\$ 2.50$ per square foot, and the material for the bottom costs $\$ 2.60$ per square foot, then what dimensions will minimize the total cost of the materials?

Note

$$
\begin{gathered}
f^{\prime \prime}(x)=8 x+2000 x^{-3} \\
f^{\prime \prime}(5)>0
\end{gathered}
$$

Therefore, $f(5)$ is a minimum cost.

$$
\begin{aligned}
& \text { Total cost }=C=4 x^{2}+10 x y \\
& \qquad x^{2} y=100 \longrightarrow y=\frac{100}{x^{2}}
\end{aligned}
$$

$$
\begin{gathered}
C=f(x)=4 x^{2}+1000 x^{-1} \\
f^{\prime}(\mathbf{x})=\mathbf{8 x}-\mathbf{1 0 0 0} x^{-2} \\
\mathbf{8 x}-\mathbf{1 0 0 0} x^{-2}=\mathbf{0}
\end{gathered}
$$

$$
\begin{aligned}
8 x^{3} & =1000 \\
x & =5 \\
y & =4
\end{aligned}
$$

The box should be 5 feet wide, 5 feet long, and 4 feet tall.

