Calculus Worksheet \#5 Unit 2 Selected Solutions

Find all stationary points for each function and use the second derivative (if possible) to classify each as a minimum, a maximum, or neither. If the second derivative can not be used, then use any method you choose.
3. $f(x)=x^{3}+3 x^{2}-9 x-15$
$f^{\prime}(x)=3 x^{2}+6 x-9 \quad 3 x^{2}+6 x-9=0$
$f^{\prime \prime}(x)=6 x+6 \quad x^{2}+2 x-3=0$

$$
(x+3)(x-1)=0
$$

$$
x=-3 \text { or } x=1
$$

$x=-3$
$y=f(-3)=12$
$f^{\prime \prime}(-3)=-12<0$

$$
\begin{gathered}
x=1 \\
y=f(1)=-20 \\
f^{\prime \prime}(1)=12>0 \\
f(1)=-20 \text { is a relative minimum. }
\end{gathered}
$$

$f(-3)=12$ is a relative maximum.
7. $f(x)=\frac{x^{2}+4}{x}$
$f(x)=x+4 x^{-1}$
$f^{\prime}(x)=1-4 x^{-2}$
$1-4 x^{-2}=0$
$f^{\prime \prime}(x)=8 \mathbf{x}^{-3}$
$x^{2}-4=0$
$(x+2)(x-2)=0$
$x=-2$ or $x=2$

$x=-2$	
$y=2$	
$y=f(-2)=-4$	$y=f(2)=4$
$f^{\prime \prime \prime}(-2)=-1<0$	$f(2)=1>0$
$f(-2)=-4$ is a relative maximum.	$f(2)=4$ is a relative minimum.

