## Calculus Worksheet \#3 Unit 2 Selected Solutions

Find the acute angle between the graphs of the given functions at each point where they intersect. Show your work and your solutions neatly organized.
2. $y=x^{2}+2 x \rightarrow f_{1}(x)=x^{2}+2 x$

$$
y=x+2 \quad \rightarrow f_{2}(x)=x+2
$$

$$
\begin{array}{lll}
x^{2}+2 x=x+2 & \text { In general, } m_{1}=f_{1}^{\prime}(x)=2 x+2 \text { and } m_{2}=f_{2}^{\prime}(x)=1 \\
x^{2}+x-2=0 & \text { At }(-2,0) & \text { At }(1,3) \\
(x+2)(x-1)=0 & m_{1}=-2 \text { and } m_{2}=1 & m_{1}=4 \text { and } m_{2}=1 \\
x=-2 \text { or } x=1 & & \\
y=0 \quad y=3 & \text { Tan } \theta=\left|\frac{m_{1}-m_{2}}{1+\left(m_{1}\right)\left(m_{2}\right)}\right| & \text { Tan } \theta=\left|\frac{m_{1}-m_{2}}{1+\left(m_{1}\right)\left(m_{2}\right)}\right|
\end{array}
$$

$(-2,0)$
$(1,3)$

$$
\begin{array}{ll}
\operatorname{Tan} \theta=\left|\frac{-2-1}{1+(-2)(1)}\right|=3 & \operatorname{Tan} \theta=\left|\frac{4-1}{1+(4)(1)}\right|=0.6 \\
\theta=\operatorname{Tan}^{-1}(3) \approx 71.6^{\circ} & \theta=\operatorname{Tan}^{-1}(.6) \approx 31.0^{\circ}
\end{array}
$$

The angle is about $71.6^{\circ}$ at $(-2,0)$ and about $31^{\circ}$ at $(1,3)$.
4. $y=2 x^{2}+x-10 \rightarrow f_{1}(x)=2 x^{2}+x-10$

$$
y=-x^{2}-5 x+14 \rightarrow f_{2}(x)=-x^{2}-5 x+14
$$

$2 x^{2}+x-10=-x^{2}-5 x+14 \quad$ In general, $m_{1}=f_{1}^{\prime}(x)=4 x+1$ and $m_{2}=f_{2}^{\prime}(x)=-2 x-5$

$$
\begin{array}{lll}
3 x^{2}+6 x-24=0 & \text { At }(-4,18) & \text { At }(2,0) \\
x^{2}+2 x-8=0 & m_{1}=-15 \text { and } m_{2}=3 & m_{1}=9 \text { and } m_{2}=-9 \\
(x+4)(x-2)=0 & \operatorname{Tan} \theta=\left|\frac{m_{1}-m_{2}}{1+\left(m_{1}\right)\left(m_{2}\right)}\right| & \operatorname{Tan} \theta=\left|\frac{m_{1}-m_{2}}{1+\left(m_{1}\right)\left(m_{2}\right)}\right| \\
x=-4 \text { or } x=2 & y=18 \quad y=0 & \operatorname{Tan} \theta=\left|\frac{-15-3}{1+(-15)(3)}\right|=\frac{9}{22}
\end{array} \begin{aligned}
& \operatorname{Tan} \theta=\left|\frac{9--9}{1+(9)(-9)}\right|=\frac{9}{40} \\
&(-4,18) \quad(2,0) \theta=\operatorname{Tan}^{-1}(9 / 22) \approx 22.2^{\circ}
\end{aligned}
$$

The angle is about $22.2^{\circ}$ at $(-4,18)$ and about $12.7^{\circ}$ at $(2,0)$.

