Calculus Worksheet \#7 Unit 11 Selected Solutions

Approximate the following definite integrals using each of the following approximation methods.
(a) S_{L} (Left Rectangular),
(b) S_{R} (Right Rectangular),
(c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and
(e) S_{S} (Simpsonô).

Show your complete solutions neatly organized. In every case, divide the interval [a, b] into 6 sub-intervals.

$$
S_{L}=(0+.125+1+3.375+8+15.625)(.5)=(28.125)(.5)=14.0625
$$

$$
S_{R}=(.125+1+3.375+8+15.625+27)(.5)=(55.125)(.5)=27.5625
$$

$$
S_{M}=(1 / 64+27 / 64+125 / 64+343 / 64+729 / 64+1331 / 64)(1 / 2)=
$$

$$
S_{M}=(2556 / 64)(1 / 2)=2556 / 128=19.96875
$$

$$
S_{T}=((.5)(0)+.125+1+3.375+8+15.625+(.5)(27))(.5)=(41.625)(.5)=20.8125
$$

$$
S_{S}=(.5 / 3)(0+2(1+8)+4(.125+3.375+15.625)+27)=(1 / 6)(121.5)=20.25
$$

$$
\begin{aligned}
& \text { 1. } \int_{0}^{3} x^{3} d x \\
& \Delta x=\frac{3-0}{6}=0.5 \\
& \mathbf{x}_{0}=0 \quad f\left(x_{0}\right)=0 \\
& \mathrm{x}_{1}^{*}=1 / 4 \quad \mathrm{f}\left(\mathrm{x}_{1}^{*}\right)=1 / 64 \\
& \mathrm{x}_{1}=.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=.125 \\
& x_{2}^{*}=3 / 4 \quad f\left(x_{2}^{*}\right)=27 / 64 \\
& \mathrm{x}_{2}=1 \quad \mathrm{f}\left(\mathrm{x}_{2}\right)=1 \\
& \mathbf{x}_{3}=1.5 \quad f\left(\mathbf{x}_{3}\right)=3.375 \\
& x_{4}=2 \quad f\left(x_{4}\right)=8 \\
& \mathrm{x}_{5}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathbf{1 5 . 6 2 5} \\
& x_{3}^{*}=5 / 4 \quad f\left(x_{3}^{*}\right)=125 / 64 \\
& x_{4}^{*}=7 / 4 \quad f\left(x_{4}^{*}\right)=343 / 64 \\
& \mathrm{x}_{5}^{*}=9 / 4 \quad \mathrm{f}\left(\mathrm{X}_{5}^{*}\right)=729 / 64 \\
& x_{6}^{*}=11 / 4 \quad f\left(x_{6}^{*}\right)=1331 / 64 \\
& x_{6}=3 \quad f\left(x_{6}\right)=27
\end{aligned}
$$

