Calculus Worksheet \#5 Unit 11

Solids of Revolution
Use the indicated method to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral. Express your final answers rounded to 3 significant digits. Show all of your work, including your answer, neatly organized on the graph paper provided.

1. The region in the first quadrant bounded by $x^{2}+y=9$ and the coordinate axes is rotated about the \mathbf{y}-axis. (Use disks.)
2. The region bounded by the x-axis, the curve $y=x^{2}$, and the line $x=2$ is rotated about the line $x=3$. (Use washers.)
3. The region bounded by the curve $y=4-x^{2}$ and the line $y=3$ is rotated about the line $x=2$. (Use shells.)

Known Cross Section

4. In this problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral. Express your final answers rounded to 3 significant digits. Show all of your work, including your answer, neatly organized on the graph paper provided.
The base of a solid is the ellipse $\mathbf{x}^{\mathbf{2}}+\mathbf{9} \mathbf{y}^{\mathbf{2}}=\mathbf{3 6}$. Each cross section by a plane perpendicular to the \mathbf{x}-axis is an isosceles right triangle with its hypotenuse in the base of the solid.
